First-in, first-out: Driving the UK’s per capita carbon dioxide emissions below 1860 levels

From VoxEU:

The Industrial Revolution has been of vast benefit to humanity, but it came at the cost of a global explosion in anthropogenic emissions of greenhouse gases. The UK was the first country into the Industrial Revolution. Now it is one of the first countries heading out, with annual CO2 emissions per capita back below the levels of the 1860s. This column presents an econometric model of UK emissions over the last 150 years to establish what has driven them down and reveal the impacts of important policies, especially the Climate Change Act of 2008. Even so, large reductions in all the UK’s CO2 sources are still required to meet its 2050 target of an 80% reduction from 1970 levels.

The Industrial Revolution began in the UK in the mid-18th century for reasons well explained by Allen (2009). With antecedents in the scientific, technological, and medical knowledge revolutions from two centuries earlier across many countries, the UK was the first country to industrialise on a large scale. The consequences are startling: 250 years later, real income levels per capita are about seven-fold higher (https://ourworldindata.org/economic-growth shows even greater changes in other countries), many killer diseases have been tamed, and longevity has approximately doubled. As Crafts (2002) showed, the average individual would be unwise to swap their life now for that of even one of the richest people several centuries ago; the Industrial Revolution and its successors have been of vast benefit to humanity.

An unintended consequence has been an explosion in atmospheric carbon dioxide and other greenhouse gas emissions. These are by-products of energy production, manufacturing, and transport (all about a quarter of emissions), with agriculture, construction and waste removal creating most of the rest. Although the UK’s first electricity generating power station in 1868 was hydro driven, coal-fired steam-driven power stations were introduced by 1882 and have since produced most of its electricity. The paleo-record over the last 750,000 years of intermittent ice ages shows atmospheric CO2 levels of between 180 parts per million (ppm) and 300ppm, but these levels now exceed 400ppm. The increases in atmospheric CO2 recorded since 1958 at Mauna Loa (Sundquist and Keeling 2009) are clearly anthropogenic in origin (e.g. Hendry and Pretis 2013). The climate change induced by increased greenhouse gases has potentially dangerous implications, highlighted by Stern (2006) and recent IPCC reports, leading to the agreement in Paris at COP21 to seek to limit temperature increases to less than 2 Centigrade, and “to pursue efforts to limit it to 1.5C’’.  Much remains to reduce CO2 emissions towards the net zero level that will be required to stabilize temperatures at any level. Meinshausen et al. (2009) analyse the difficulties of even achieving 2C, but renewable technologies offer hope of at least further large emission reductions.

However, there was a dramatic drop in the UK’s per capita emissions of CO2 by 2017 to below the levels of the 1860s – the country first into the Industrial Revolution is one of the first out. On 22 April 2017, Britain went a full day without turning on its coal-fired power stations for the first time in more than 130 years, and on 26 May 2017 it generated almost 25% of its electrical energy from solar. The UK’s CO2 emissions are now just half of their peak level in 1970. How was this reduction achieved?

UK CO2 emissions

The data from 1860 on UK CO2 emissions, fossil fuel volumes, and the ratio of CO2 emissions to the capital stock are shown in Figure 1. While other greenhouse gas emissions matter, CO2comprises about 80% of the UK total, with methane, nitrous oxide, and hydrofluorocarbons (HFCs) making up most of the rest in CO2 equivalents. However, various fossil fuels have different CO2 emissions per unit of energy produced and depend on how efficiently fuels are burnt, from an open fire through vehicles, to a gas-fired power station.”

 

Continue reading here.

Posted by at 5:03 AM

Labels: Energy & Climate Change

Home

Subscribe to: Posts