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Abstract

This study assesses the accuracy of time-series econometric methods
in forecasting electricity demand in developing countries. The analysis of
historical time series for 106 developing countries over the period 1960-
2012 demonstrates that econometric forecasts are highly accurate for the
majority of developing countries. These forecasts significantly outperform
predictions of simple heuristical models, which assume that electricity
demand grows at an exogenous rate or is proportional to real GDP growth.
The quality of demand forecasts, however, diminishes for the countries of
Subsaharan Africa region, the low-income countries, and the countries
with small electricity generation systems.
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1 Introduction

Forecasting the future demand of electricity is a significant problem for the
utility companies, policy-makers and private investors in the developing coun-
tries. Reliable electricity demand forecasts are essential for both short-term load
allocation and long-term planning for future generation facilities and transmis-
sion augmentation. In the short term, high-quality forecasts allow the utilities
to optimize the amount of generated power, i.e., maximize their revenue and
minimize operational (including environmental) costs. Over the longer term,
accurate forecasts are even more important, as they help to reduce dynamic
inefficiencies. As excess power is not easily storable, underestimating electricity
demand results in supply shortages and forced power outages, which have detri-
mental effects on productivity and economic growth (Calderén and Servén 2004;
Fisher-Vanden, et al., 2015; Allcott et al., 2016). However, overestimating de-
mand may result in overinvestment in generation capacity and ultimately even
higher electricity prices. Forecasting electricity demand is a challenging problem
as it is subject to a range of uncertainties, which include, among other factors,
underlying population growth, changing technology, economic conditions, and
prevailing weather conditions (and the timing of those conditions). This prob-
lem can be particularly challenging in developing countries, where data is often
elusive, political influences are often brought to bear, and historical electricity
demand itself is more volatile owing to macroeconomic or political instability.
Despite the enormous significance of having accurate and reliable electric-
ity demand forecasts for utilities, investors and policy makers, the electricity
demand forecasting literature comprises of a handful of studies. Table 1 sum-
marizes this limited research on electricity production and consumption econo-
metric forecasts.! Most of the studies focus on developed economies. Only five
studies (Abdel-Aal and Al-Garni 1997, Sadownik and Barbosa 1999, Saab et
al. 2001, Inglesi 2010, and El-Shazly 2013) forecast electricity demand for de-
veloping countries (Saudi Arabia, Brazil, Lebanon, South Africa, and Egypt,
respectively). As regards data frequency, these studies are almost evenly split
between short-term forecasts based on monthly data and long-term forecasts

based on yearly data. The largest part of these studies employs univariate time

IThis summary focuses on medium- to long-term econometric projections and does not
include high-frequency forecast studies of day-ahead electricity demand. It also omits non-
econometric forecast studies based on soft computing techniques such as fuzzy logic, genetic
algorithm, and neural networks, and bottom-up computational models such as MARKAL
and LEAP. For a comprehensive review of these methods and their applications to energy
forecasting, please refer to Suganthi and Samuel (2012).
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series methods with exogenous regressors. Few other studies use multivariate
time series methods or state space econometric models. With the exception of
Baltagi et al. (2002), none of these studies attempt to compare the forecast
accuracy of different forecasting models.? Given significant variation in country
coverage, time frame, forecast horizons, and econometric methods, the results
of these studies are difficult, if not impossible, to reconcile.

The purpose of this study is to assess the accuracy of different econometric
methods in forecasting electricity demand in developing countries. Based on the
time series econometrics literature we first develop an econometric framework for
forecasting electricity demand. We then obtain a number of electricity demand
forecasts based on historical time series of 106 developing countries over the
period 1960-2012. Finally, we evaluate the accuracy of the electricity demand
forecasts resulting from different econometric methods and model specifications.

Our results demonstrate that time-series econometric forecasts yield highly
accurate predictions for the evolution of electricity demand in the majority of
developing countries. The forecasts based on the best performing method do
significantly improve over the predictions of two heuristical models, commonly
used by development practitioners, which assume that electricity demand grows
at an exogenous rate or is proportional to real GDP growth. The quality of
demand forecasts, however, diminishes for the countries of Subsaharan Africa
region, the low-income countries, and the countries with small power generation

systems.

2 Forecasting Methods and Accuracy Tests

This section briefly documents the econometric framework for forecasting elec-
tricity demand and evaluating its forecast accuracy. It first discusses implica-
tions of the stationarity property on forecastability of electricity demand time
series. It then summarizes econometric methods employed for forecasting elec-
tricity demand. Finally, it describes measures of forecast errors for assessing

forecast accuracy and comparing the quality of different forecasting methods.

2Baltagi et al. (2002) only focus on a small set of estimators within Autoregressive dis-
tributed lag (ARDL) model.



2.1 Testing for Data Stationarity

As electricity generation and consumption data series are typically nonstation-
ary (i.e., their mean and/or variance are varying with time), an important aspect
of forecasting model selection concerns the appropriate treatment of nonstation-
ary data. The difference-stationary processes contain stochastic trends that are
integrated of order k, so that differencing k times yields a stationary series.
The difference stationary processes have poor forecastability as forecast error
variances grow linearly in the forecast horizon for these processes (Clements
and Hendry 2001). Establishing whether the data generating process is the
difference stationary one is therefore of particular concern.

To test whether the data are the difference stationary we perform the modi-
fied Dickey—Fuller test (also known as the DF-GLS test) proposed by Elliott et
al (1996).3 The test involves fitting a regression of the form

E
Ay = a+ Byr—1 + Z Ok AYt—k + &t (1)

i=1
where y; are the electricity production series, e; is the error term, a, [
and § are the parameters to be estimated, k is the lag order of time ¢, and A
is the difference operator. The DF-GLS test is performed on detrended data
by Generalized Least Squares (GLS) and involves testing the null hypothesis
Hy : 8 =0. If the test cannot reject the null hypothesis, this implies that y; is
a random walk, possibly with drift and the data are difference stationary. Our
choice of lag order in regression (1) is based on the modified Akaike information

criterion developed by Ng and Perron (2000).

2.2 Forecasting Methods

Table 2 summarizes econometric methods employed for forecasting electricity
demand. A brief formal representation of these methods is documented in Ap-
pendix A.1. For advanced textbook treatment of these methods, please refer to
Harvey (1989), Hamilton (1994), Liitkepohl (2005), and Enders (2010).

3For robustness purposes we have also performed other tests for data stationarity, such as
Augmented Dickey—Fuller test and Phillips and Perron (1988) unit root test. The results were
little changed.



Table 2: Methods for Assessing Electricity Production Forecasts

Method Description

VAR3/VECM3 Trivariate vector autoregressive model /
Vector error correction model

VAR2/VECM2 Bivariate vector autoregressive model /
Vector error correction model

ARIMA Autoregressive integrated moving average model

GARCH Generalized autoregressive conditional
heteroskedasticity model

Holt-Winters Holt-Winter’s linear smoothing model

UCM-RWD Unobserved components model:
Random walk with a drift

UCM-LLTM Unobserved components model:
Local level with deterministic trend

UCM-RWSC Unobserved components model:
Random walk with a stochastic cycle

These methods can be broadly grouped into three categories. Vector autore-
gressive model (VAR) and Vector error correction model (VECM) are the mul-
tivariate time series forecasting methods that are most appropriate when elec-
tricity demand is closely related to other macroeconomic fundamentals. Over
the long term, electricity demand is influenced by economic and demographic
growth, changes in energy intensity, and shifting input prices. Among these
drivers, gross domestic product (GDP) is often the strongest correlate of elec-
tricity demand (Steinbuks et al., 2017). And the data for input prices and
structural fundamentals affecting energy intensity are scarce for most of the de-
veloping countries. In light of the above, we employ trivariate methods, which
assume that a country’s electricity demand is co-determined by GDP and popu-
lation growth and bivariate methods, which assume that the country’s electricity
demand is co-determined by its GDP growth only.

Autoregressive integrated moving average (ARIMA) and generalized autore-
gressive conditional heteroskedasticity (GARCH) models are univariate time se-
ries forecasting methods that work best when other drivers of electricity demand
are exogenous and have a small effect on electricity demand. These models as-
sume that the best predictors of electricity demand are its past realizations.
Additionally, the GARCH model is particularly helpful for forecasting electric-
ity demand in countries, where electricity supply is highly volatile.

Finally, Holt-Winters and unobserved components methods are the most

suitable for forecasting electricity demand that evolves around a linear trend,



which can be either deterministic or stochastic. Additionally, the random walk
with a stochastic cycle model (RWSC) may further improve forecasting accuracy
in countries, where electricity demand exhibits cyclical behavior.
Autoregressive time series models (both multivariate and univariate) and the
Holt-Winters method are applied to forecast both stationary and non-stationary
electricity demand time series. Unobserved components models are only applied
to forecast non-stationary electricity demand series. For all autoregressive time
series models, we also estimate different specifications, assuming different lag
structures (for details, please refer to Appendix). Altogether we estimate 33
model specifications for stationary electricity demand series and 36 model spec-

ifications for non-stationary series.

2.3 Measures of Forecast Accuracy of Individual Methods

We employ two popular measures of forecast errors for assessing forecast accu-
racy of an individual method: symmetric mean absolute percent error (sSMAPE)
and root mean squared error (RMSE). sMAPE is defined as the average absolute
percent error of electricity consumption forecasts, y¥', minus actuals divided by
the average of absolute values of forecasts and actuals across all forecasts made

for a given horizon:

T

1
sMAPEziFE:

t=1

(2)
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By using the symmetric MAPE, we avoid the problem of large errors when
the actual values are close to zero, and the problem of the large difference
between the absolute percentage errors when actuals are greater than forecasts
and vice versa (Makridakis and Hibon, 2000).

The RMSE is a quadratic scoring rule which measures the average mag-
nitude of the error. RMSE is defined as the difference between forecast and
corresponding observed values that are each squared and then averaged over

the sample:

T 2
}MWE:¢Z“M§_%) (3)

As forecast errors are squared before they are averaged, the RMSE gives a
relatively high weight to larger errors. The RMSE is, therefore, most useful

when large errors are particularly undesirable.



2.4 Measures of Forecast Accuracy of Competing Meth-
ods

An important question that occurs in assessing the accuracy of electricity de-
mand forecasts is how to formally compare the quality of different forecasting
methods. Makridakis and Hibon (2000, p. 457) argue that “the absolute ac-
curacy of the various methods is not as important as how well these methods
perform relative to some benchmark.” We choose two benchmarks, the random
walk model (Nave), and the fixed GDP multiplier model (N&ive2). The for-
mer is a standard benchmark in the forecasting literature, which sets predicted
electricity demand to the last available data value of stationary series. The
latter benchmark assumes that electricity demand grows at the exogenous rate,
which is the same rate as country’s GDP growth.* The choice of this bench-
mark is motivated by common practices by development professionals. Given
the paucity of data and the methodological challenges, they frequently derive
electricity demand forecasts from GDP-based demand growth forecasts as prox-
ies for the growth in demand for electricity (Bhattacharyya and Timilsina 2010,
Steinbuks et al. 2017).

To assess the accuracy of electricity demand forecasts, we calculate the me-
dian relative absolute error (MdRAE), which is the absolute error for the pro-
posed model relative to the absolute error for a random walk model. It is defined

as

v - yt‘
MdRAE = P50 W (4)
Y’ - yt’

It ranges from 0 (a perfect forecast) to 1.0 (equal to the random walk), to
greater than 1 (worse than the random walk). The RAE is similar to Theil’s
U2, except that it is a linear rather than a quadratic measure. It is designed
to be easy to interpret, and it lends itself easily to summarizing across horizons
and series as it controls for scale and the difficulty of forecasting. The median
RAE is recommended for comparing the accuracy of alternative models as it
also controls for outliers (for information on the performance of this measure,
see Armstrong and Collopy, 1992). We also compute the median percentage
better measure, which reports the median of the percentage difference between

sMAPE forecasting error of proposed model and one of the two benchmark

4For a more detailed description of these models, please refer to Appendix A.2.



models. Finally, we perform the Diebold and Mariano (1995) test to assess
whether differences between competing forecasts are statistically significant or

simply due to sampling variability.®

3 Electricity Demand Measurement, Data and

the Forecast Horizon

The ultimate goal of this study is to forecast electricity demand, i.e., the to-
tal final consumption.® However, in many developing countries, particularly in
South Asia and Subsaharan Africa regions, these data are either not available or
available for a relatively short time frame due to difficulties with an accurate ac-
counting of electricity at the end use level.” In light of these limitations, we have
to rely on the more accurate electricity production (output) data for forecasting
purposes. As electricity is a nonstorable and poorly tradable commodity, the
output is a reasonable proxy for the total final consumption. However, we have
to acknowledge that using electricity output data may lead to biased forecasts
in a handful of developing countries with high exposure to electricity trade.

As regards data sources, the electricity generation (output) data come from
the OECD/IEA Extended World Energy Balances database (IEA, 2016). The
data on population and real GDP come from Penn World Tables, version 8
(Feenstra et al., 2013). The resulting dataset covers 106 developing countries
over the period between 1960 and 2012.

Finally, we have to specify the within sample forecast horizons for assessing
the accuracy of the forecasting methods. These are set to five and ten years,
conditional on at least ten observations in the forecast validation sample. Addi-
tionally, we report out of sample forecasts over the period 2013-2022. For each

country in the dataset, the out of sample forecasts are chosen based on the fore-

5For a more detailed description of the Diebold and Mariano (1995) test please refer to
appendix section A.3.

6Bhattacharyya and Timilsina (2010) point out that the reliance on consumption data for
the demand forecasting implies that only the satisfied demand is captured the suppressed
demand is not taken into consideration. This problem can be potentially important in the
presence of electricity market distortions and, correspondingly, unrealized demand (e.g., load
shedding). As estimating unrealized demand typically requires high-quality micro-level panel
data of enterprises and households, which are typically not available, addressing this problem
is beyond the scope of this paper.

"These difficulties include the inaccurate recording of electricity consumption due to the
poor technical capacity of electric utilities (Jamasb 2006), the absence of reliable electricity
meters (Victor and Heller 2007), and large unaccounted losses from electricity theft (Smith
2004, Joseph 2010).



casting method corresponding to lowest within sample 5 year forecast horizon
sMAPE. Appendix Table A3.1 shows the historical and forecasted electricity
demand growth rates for each country. Country-specific forecast plots are also

shown in the appendix.

4 Evaluating Accuracy of Different Methods

This section describes the evaluation of different forecasting methods’ accuracy.
In subsection 4.1 we compare different forecasting methods based on the chosen
measures of predictive accuracy (for a description of these measures see subsec-
tion 2.3). In subsection 4.2 we examine the effectiveness of the best performing

method across different categories of developing countries.

4.1 Comparisons across error measures

Tables 3 and 4 report frequencies of best-performing methods according to
SMAPE and RFSE criteria, respectively.® For both measures of forecasts accu-
racy, the GARCH model has the highest incidence of delivering best predictions
over both 5- and 10-year forecast horizons, followed by the bivariate VAR / VEC
model over the 5-year forecast horizon and the trivariate VAR / VEC model over
the 10-year forecast horizon. None of the chosen forecasting methods appears
clearly superior to other methods. However, VAR/VEC and ARIMA/GARCH
models cumulatively account for a dominant share of best performing models.
Other methods (Holt-Winters and Unobserved Components models) tend to

perform better in a relatively small number of cases.

8For VAR/VEC and ARIMA /GARCH models, the best performing method is a specifica-
tion with the number of lagged terms that minimizes sSsMAPE and RFSE forecast errors.

10



Table 3: Frequency Tabulation of Best Performing Methods: sMAPE criterion

5 year forecast horizon

10 year forecast horizon

Model Count Frequency Count Frequency
VAR3 / VEC3 15 14.15% 30 28.57%
VAR2 / VEC2 21 19.81% 20 19.03%
GARCH 39 36.79% 34 32.35%
ARIMA 13 12.25% 9 8.55%
HOLT-WINTERS 6 5.66% 8 7.62%
UCM-RWD 3 2.83% 2 1.90%
UCM-RWC 9 8.49% 2 1.90%
Total 106 100% 105 100%

Table 4: Frequency Tabulation of Best Performing Methods: RMSE criterion

5 year forecast horizon

10 year forecast horizon

Model Count Frequency Count Frequency
VAR3 / VEC3 15 14.15% 33 31.41%
VAR2 / VEC2 23 21.69% 19 18.09%
GARCH 29 27.35% 33 31.41%
ARIMA 17 16.02% 7 6.65%
HOLT-WINTERS 7 6.60% 10 9.52%
UCM-RWD 5 4.72% 2 1.90%
UCM-LLTM 1 0.94% 0 0.00%
UCM-RWC 9 8.49% 1 0.95%
Total 106 100% 105 100%

Tables 5 and 6 show how well the forecasting methods perform compared to

benchmark models, Naive and Néive2. For each forecast horizon, these tables

report the median percentage better measure (see subsection 2.4) as well as

the percentage of times the difference between the forecast errors is statistically

significant based on the Diebold and Mariano (1995) forecast accuracy test.

Table 5 compares the accuracy of forecasting methods relative to the Naive

model, which assumes that electricity demand is a random walk. We see that

the best performing model based on SMAPE criterion yields considerable im-

provement over Néaive model. The median sMAPE forecast error of the Naive

model is 77 percent higher than forecast error of the best performing model

over the 5-year forecast horizon and 74 percent higher over the 10 year forecast

11



Table 5: Comparison of various methods with Néaive as the benchmark

Model 5 year forecast horizon 10 year forecast horizon
Median % significant Median % significant
% Better (p = 0.05) % Better (p = 0.05)
Lowest sMAPE 7% 85.0% 74% 67.5%
VAR3 / VEC3 19% 83.3% 16% 68.3%
VAR2 / VEC2 ™% 96.5% 11% 72.5%
GARCH 37% 84.6% 10% 69.3%
ARIMA 13% 83.9% -8% 70.1%
HOLT-WINTERS -2% 86.0% -11% 78.1%
UCM-RWD -9% 86.8% -22% 82.5%
UCM-LLTM -10% 88.4% -23% 82.5%
UCM-RWC -40% 94.8% -58% 87.9%

horizon. And the difference between forecast errors is statistically significant
(assuming 5 percent level) for 85 percent of countries over the 5 year forecast
horizon and for 67.5 percent of countries over the 10-year forecast horizon. As
regards specific forecasting methods, VAR/VEC and GARCH methods yield
more accurate forecasts than the Naive model over both 5- and 10-year forecast
horizons, with median accuracy improvement ranging between 7 and 37 percent.
To the contrary, the Holt-Winters method and Unobserved Components Models
yield less accurate forecasts over both 5- and 10-year forecast horizons, with me-
dian accuracy decline ranging between 2 and 58 percent. Finally, the ARIMA
model produces more accurate forecasts than the Naive model over the 5-year
forecast horizon, with median accuracy improvement of 13 percent. However,
the ARIMA model yields less accurate forecasts than the Néive model over 10-
year forecast horizon, with median accuracy decline of 8 percent. Regardless of
the direction of forecast error differences, they are mostly statistically significant
across all methods, ranging between 83.3 to 96.5 percent of countries over the
5-year forecast horizon, and between 68.3 and 87.9 percent of countries over the
10-year forecast horizon.

Table 6 compares the accuracy of forecasting methods relative to Néive2
model, which assumes that electricity demand grows at the same rate as GDP.
The results are qualitatively similar to those reported in Table 5, and the quan-
titative improvements over forecasts of Naive2 model are even more pronounced.
The median sMAPE forecast error of the Naive2 model is 184% percent higher
than forecast error of the best performing model over the 5-year forecast hori-

12



Table 6: Comparison of various methods with Néaive2 as the benchmark

Model 5 year forecast horizon 10 year forecast horizon
Median % significant Median % significant
% Better (p = 0.05) % Better (p = 0.05)
Lowest sMAPE 184% 88.0% 124% 73.0%
VAR3 / VEC3 68% 91.2% 52% 73.5%
VAR2 / VEC2 57% 95.2% 43% 73.7%
GARCH 121% 85.1% 54% 74.5%
ARIMA 69% 91.8% 23% 76.3%
HOLT-WINTERS 45% 90.2% 17% 81.7%
UCM-RWD 35% 90.5% 1% 79.5%
UCM-LLTM 31% 90.8% 0% 77.1%
UCM-RWC -16% 94.2% -40% 91.2%

zon and 124 percent higher over the 10-year forecast horizon. The performance
of specific forecasting methods over the N&aive2 forecasting model is also im-
proved. Specifically, VAR/VEC, GARCH, ARIMA, and Holt-Winters methods
all yield more accurate forecasts than the N&ive2 model over both 5- and 10-
year forecast horizons, with median accuracy improvement ranging between 17
and 121 percent. As regards Unobserved Components models, both RWD and
LLTM methods deliver more accurate forecasts over the 5-year forecast hori-
zon, whereas their forecast accuracy over the 5 year forecast horizon is of the
same magnitude as that of the Nédive2 model. Finally, the RWC model yields
less accurate forecasts than the Néive2 model over both 5- and 10-year forecast
horizons, with median accuracy decline between 16 and 40 percent. Similar to
results reported in Table 5, the differences in predicted forecasts between fore-
casting methods and the N&ive2 model are mostly statistically significant across
all methods, ranging between 85.1 to 95.2 percent of countries over the 5-year
forecast horizon, and between 73 and 91.2 percent of countries over the 10-year

forecast horizon.

4.2 Comparisons across developing country groups

Tables 7 - 10 compare effectiveness of the best performing method (based on
sMAPE criterion) across developing countries based on their regional, income,
generation capacity and energy intensity characteristics. Table 7 reports the

average SMAPE and MdRAE measures of forecast accuracy across regions over

13



Table 7: Comparison of Forecast Errors across Regions

5 year forecast horizon 10 year forecast horizon

Region

sMAPE MdRAE sMAPE MdRAE
AFR 0.09 0.44 0.11 0.63
EAP 0.05 0.54 0.05 0.53
ECA 0.06 0.45 0.07 0.49
LAC 0.05 0.52 0.08 0.62
MENA 0.05 0.42 0.08 0.52
SAR 0.02 0.25 0.05 0.41

the 5- and 10-year forecast horizons. All in all, the best performing method
is highly accurate with average sMAPE varying between 2 and 9 percent over
the 5-year forecasting horizon and between 5 and 11 percent over the 10-year
forecasting horizon, respectively. Consistent with the results from the previous
section, the best performing method is also more accurate than the Naive model,
with average MARAE varying between 0.25 and 0.54 over the 5-year forecast-
ing horizon, and between 0.41 and 0.63 over the 10-year forecasting horizon,
respectively.

It follows from Table 7 that the forecast accuracy is the highest for the coun-
tries of the South Asia region over both 5- and 10-year forecasting horizons and
across both types of error accuracy measures. The forecast accuracy is the low-
est for the Subsaharan Africa region based on the SMAPE criterion over both
5- and 10- year forecasting horizons, with other regions having broadly com-
parable forecast errors. The forecast accuracy based on the MARAE criterion
is the lowest for the East Asia and Pacific and the Latin America regions over
the 5-year forecasting horizon, and for the Subsaharan Africa and the Latin
America regions over the 10-year forecasting horizon.

To frther elucidate the observed differences in the forecast accuracy across
regions, this study also reports the average SMAPE and MARAE measures of
forecast accuracy for individual countries, grouped across regions over the 5- and
10-year forecast horizons (see Appendix Table A3.2). For most countries, both
sMAPE and MdRAE errors are small, which indicates that the best performing
method is both highly accurate and yields considerable improvements over the
Néive model. However, the forecasting accuracy is greatly diminished for coun-
tries that have recently undertaken major investments (Ethiopia, Cameroon,

Myanmar) or disinvestments (Lithuania) in electricity generation assets; coun-

14



tries that have volatile electricity demand and / or rely heavily on electricity
imports (Albania, Benin, Botswana); or countries affected by major conflicts
(Iraq, Libya, Syria) or environmental disasters (Haiti).

Table 8 shows the average sMAPE and MdRAE measures of forecast accu-
racy across country income groups over the 5- and 10-year forecast horizons.
It follows from Table 8 that electricity demand forecasts are less accurate for
the lower income countries. For low income countries, the average sMAPE is
9 and 12 percent over the 5- and 10-year forecast horizons, respectively. These
errors are twice as high compared to high-income countries. The accuracy of
forecasting methods relative to the Naive model is also considerably diminished
for lower income countries. For low-income countries, the value of MARAE is
0.79 over the 10-year forecast horizon, which indicates that the best performing

method is just 21 percent more accurate than the Naive model.

Table 8: Comparison of Forecast Errors across Income Groups

5 year forecast horizon 10 year forecast horizon
Income

sMAPE MdRAE sMAPE MdRAE
Low 0.09 0.49 0.12 0.79
Low-Middle 0.05 0.39 0.07 0.44
Upper-Middle 0.06 0.50 0.08 0.59
High 0.05 0.46 0.06 0.49

Table 9 shows the average sMAPE and MdRAE measures of forecast accu-
racy across installed capacity categories over the 5 and 10 year forecast horizons.
Forecast accuracy is the highest for the countries with large installed capacity
and diminishes significantly as the size of the installed capacity falls. For coun-
tries with the largest installed capacity (over 100GW), the average sMAPE is
3 and 4 percent over the 5 and 10 year forecast horizons, respectively. These
errors are twice as low as compared to countries with medium installed capac-
ity size (1 to 10 GW). For countries with the smallest installed capacity (less
than 1GW), electricity generation is particularly difficult to forecast, with the
average SMAPE of 9 and 10 percent over the 5- and 10-year forecast horizons,
respectively. The countries with large installed capacity also have higher accu-
racy of forecasting methods relative to the N&ive model. The value of MARAE
for countries with the largest installed capacity (over 100GW) is 0.34 and 0.23
over the 10-year forecast horizon, which is 1.5-2 times smaller as compared to

15



countries with the smallest installed capacity size (less than 1IGW).

Table 9: Comparison of Forecast Errors across Installed Capacity Categories

5 year forecast horizon 10 year forecast horizon

Installed Capacity

sMAPE MdRAE sMAPE MdRAE
less than 1GW 0.09 0.50 0.10 0.57
1GW-10GW 0.06 0.47 0.08 0.59
10GW-100GW 0.02 0.41 0.04 0.47
more than 100GW  0.03 0.34 0.04 0.23

Table 10 shows the average sMAPE and MdRAE measures of forecast accu-
racy across energy intensity categories over the 5 and 10 year forecast horizons.
Forecast accuracy is the highest for the most energy intensive countries (more
than 12$/kgoe) with average sMAPE of 2 and 4 percent over the 5 and 10 year
forecast horizons, respectively. Compared to other countries these errors are 2
to 3 times smaller over the 5 year forecast horizon and 1.5 to 2 times smaller
over the 10 year forecast horizon. However, the more energy intensive countries
also have the lower accuracy of forecasting methods relative to the Naive model,
at least for the shorter term forecast horizon. The value of MARAE for the most
energy intensive countries is 0.75 over the 5 year forecast horizon, which is twice
as high as compared to the most energy efficient countries. To the contrary, the
most energy efficient countries have the lowest forecast accuracy relative to the
Néive model over the 10 year forecast horizon, with MARAE of 0.68.

Table 10: Comparison of Forecast Errors across Energy Intensity Categories

Energy Intensity 5 year forecast horizon 10 year forecast horizon

sMAPE MdRAE sMAPE MdRAE
<3%/kgoe 0.04 0.34 0.09 0.68
3%/ke-68/kgoe 0.06 0.41 0.08 0.47
6%$/kg-9%/kgoe 0.07 0.43 0.09 0.56
9%/kg-128 /kgoe  0.06 0.50 0.06 0.46
>12$ /kgoe 0.02 0.75 0.04 0.52
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5 Conclusions

Accurate projections of electricity demand are essential for planning power sys-
tems and appraising investment projects in developing countries. Nonetheless,
demand forecasting issues are not rigorously studied and are not always given
adequate attention among development practitioners. This study demonstrates
that time-series econometric methods yield highly accurate forecast predictions
for the majority of developing countries. Econometric forecasts significantly out-
perform simple heuristical rules used by practitioners, who frequently assume
that electricity demand grows at some exogenous rate or is proportional to
real GDP growth. These improvements notwithstanding, relying on time-series
econometric methods alone may produce inaccurate forecasts in some developing
countries. We show that econometric forecasts of electricity demand are chal-
lenging for developing countries that are in the process of rapid economic and
structural transformation or are prone to conflicts and environmental disasters.
These include, among other, the countries in Subsaharan Africa region, the low-
income countries, and the countries with small electricity generation systems.
For those countries, in particular, a more rigorous forecasting approach, using a
combination of micro-econometric and computational modeling methods would

be preferred.
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Appendix

A.1 Description of Forecasting Methods

A.1.1 VAR / VEC Model

Vector autoregressive model (VAR) is a commonly used tool for forecasting
multivariate stationary time series that are simultaneously determined, e.g.,
electricity demand, and its drivers such as GDP, population, etc. The structure
of VAR model is that each variable is a linear function of past lags of itself
and past lags of the other variables. The VAR model with lag order p with k

endogenous and m exogenous variables can be written as

Yt = AYt,:l + B()Xt + €¢, (A].].)

where y; is the K x 1 vector of endogenous variables, A is a K x Kp matrix
of coefficients, Yy is the Kp x 1 matrix of endogenous variables of lag order
p, B is a K x M matrix of coefficients, x; is the M x 1 vector of exogenous
variables, and ¢¢ is the K X 1 vector of white noise innovations.

Vector error correction model (VECM) provides a framework for estimation,
inference, and forecasting of difference stationary multivariate time series, when
these variables are simultaneously determined. VECM representation of VAR

model of lag order p defined by equation (Al.1) is given by

p—1
Aye =TIy, 1+ » TiAye i+ Boxe + & (A1.2)

i=1

where IT = Z?i’;Aj I, I = —ZngHAj, and other terms are same as
in equation (Al.1). If the variables y are difference stationary, the matrix IT
in A1.2 has rank 0 < r < K, where r is the number of linearly independent
cointegrating vectors. As matrix II has reduced rank the cointegrating vectors
are not identified without further restrictions. We apply standard normalization
restrictions suggested by Johansen (1995). For both VAR and VECM models

we set the maximum number of lagged terms, p, equal to four.

A.1.2 ARIMA Model

AutoRegressive Integrated Moving Average (ARIMA) models are appropriate
if there is a reason to believe that other drivers of electricity consumption are
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exogenous or have little effect on electricity demand forecasts. They provide a
parsimonious description of a weakly stationary stochastic processes in terms
of two polynomials, one for the auto-regression and the second for the moving
average. Pure ARMA models can be written as autoregressions in the dependent
variable. An ARIMA (p,d,q) model can be written as

P q
Ay, =a+ Z pilly_; + Z Oict—i + €4, (A1.3)
i=1 i=1

where y; is the dependent variable, « is a constant term, p and 6 are the
coeflicients of autoregressive and moving average processes of lag orders p and g,
d is the order of time-series integration (zero for stationary series), and ¢; is the
error term that is assumed to be a white noise. We set the maximum number
of lagged autoregressive terms, p, equal to four and the maximum number of

lagged moving average terms, ¢, equal to two.

A.1.3 GARCH Model

Generalized autoregressive conditional heteroskedasticity (GARCH) models are
frequently used for forecasting univariate time series when there is reason to
believe that the error terms have a characteristic size or variance. This model
is particularly relevant for developing countries with highly volatile electricity

demand. The variance equation in the GARCH (p,q) model can be written as

P q
Var (e¢) = B+ Z pigs—; + Z 8i0p—4; (Al14)
i=1 j=1

where p is the length of squared innovations (ARCH terms) lags and p is the
length of variances (GARCH terms) lags. The GARCH model simultaneously
combines equations (A1.3) and (A1.4).

A.1.4 Holt-Winters Method

Holt-Winters method is used for forecasting time series that can be modeled as
a linear trend in which the intercept and the coefficient on time vary over time.
The method was shown to produce optimal forecasts for the ARIMA(0,2,2)
model and some local linear models (Gardner, 1985). The Holt-Winters method

forecasts series of the form
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Yir1 = ag + byt (A1.5)

where 7, is the forecast of the original series y;, and a; and b; are coefficients
that drift over time. Given starting values, ag and by, the updating equations

are recursively formulated as

ar = oy + (1 — a)(ar—1 + bi—1) (A1.6)

and

by = B(at — at_l) + (1 — ﬁ)bt_1 (Al?)

where smoothing parameters o and § are chosen by an iterative process to

minimize the in-sample sum-of-squared prediction errors.

A.1.5 Unobserved Components Models

The Random Walk with a Drift (RWD) and the Local Level with Deterministic
Trend (LLTD) models are most appropriate for forecasting difference-stationary
time series that evolve around a linear appearing trend. Mathematical repre-

sentation of the RWD and LLDT models is given by equations

Yt = et
e = pe—1 + a0+ &y, (AL8)
(RWD) and
Yt = it + Uy
e = i1 + a+ &y, (A1.9)

(LLDT), where p, is the conditional expectation of electricity demand series,
Yt, a is a drift parameter, and €; and u; are the white noise error terms.

The Random Walk with a Stochastic Cycle Model (RWSC) is most ap-
propriate for forecasting difference-stationary time series that exhibit cyclical

behaviour. Mathematical representation of the RWSC model is given by

24



Yo = pht + Py

pe = pe—1 + €y,

Yy = g1 pcosA + Py 1 psinA + wy,

by = —Pp1psinA + 1 pcosh + Ty, (A1.10)

where X is a frequency of the cyclical component, p is a unit less scaling (or
dampening) factor, &t is auxiliary variable, and &;, w;, and w; are the white

noise error terms.

A.2 Description of Benchmark Models

A.2.1 Naive Model

The forecasts of the Naive model for covariance stationary data are simply the

last available data value. It is defined as follows:

Ytri = Yt (A1.11)

where i = 1,2,...,m, and m = 5 for 5-year ahead forecasts and m = 10 for
10-year ahead forecasts. In statistical terms the Néive model is a random walk
model, which assumes that the trend in the data cannot be predicted, and that
the best forecast for the future is their own most recent value.

The forecasts of the Naive model for difference stationary data are the dif-
ference of the last available data value summed over the forecast period, and

added to the last available data value. It is defined as follows:

t+m
veri=ye+ > (W —vi1), (A1.12)
i=t+1
where m = 5 for 5-year ahead forecasts and m = 10 for 10-year ahead

forecasts. In statistical terms the Néive model holds the same interpretation as
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a random walk model.

A.2.2 Naive2 Model

The N&ive2 model assumes that electricity demand grows at exogenous rate,

which is the same rate as country’s GDP growth. It is defined as follows:

Yori = (L+K) e, (A1.13)

where k is the expected growth in GDP. In this study we assume it is equal

to the historical GDP growth average over last 5 years in the sample.

A.3 Diebold-Mariano (1995) Test

The Diebold and Mariano (1995) (DM) parametric test is a well-known pro-
cedure for testing the null hypothesis of no difference in the accuracy of two
competing forecasts.

Let {(elt,e%)}tT:l be a bivariate time series vector of competing forecast
errors. The quality of the forecasts is to be evaluated according to a specified
loss function, g(-). Let us assume that the loss function depends only on the
forecast errors, and let d; = g(e1:) — g(eat) be the loss differential. Then, the

null hypothesis of unconditional equal forecast accuracy is

Hy : E[dy] =0, (A1.14)

i.e., the errors associated with the two forecasts are, on average, of equal
magnitude. If the null is rejected, the forecasting method that yields the smallest
loss will be chosen. Given a series of loss differentials, {dt}?zl, a test of (A1.14)

is based on their sample mean:

T
-1
d= TZdt. (A1.15)
t=1
The DM test it is given by
pm=—1 (A1.16)
V(d)

where V(d) is an estimate of the asymptotic variance of d. Whenever an
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optimal forecast is produced from a proper information set, the resulting h-step
forecast errors will follow a moving-average (MA) process of order (h— 1) of the
form e; = 6pe; +6164—1 + ... + Op_161—p+1. Diebold and Mariano (1995) propose
estimating the variance using the truncated kernel with a bandwidth of (h — 1)

for h-step forecasts:

W@=%

h—1
o423 n), (117
k=1

where 4, is an estimate of the kth auto covariance of d; , given by

T
1 : :
= E (dy — d)(di—y, —d)
t=k+1

Luger (2004, p. 2) argues that “if the loss-differential series satisfies some
regularity assumptions such as covariance stationarity, short memory, and the
existence of moments that ensure the applicability of a central limit theorem,
then the DM test statistic has an asymptotic standard normal distribution under

the null hypothesis.”
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Tables

Table A3.1: Historical and Forecast Rates of Electricity Demand Growth

Historical growth Forecast growth, 2015-2020

country 2000-2004 2005-2009 2010-2014" 5% CI _Mean _ 95% CI

Sub-Saharan Africa

Angola 18.6% 19.1% 3.5% -2.1% 3.2% 7.0%
Benin 5.5% 8.0% 1.2% -7.5% 0.0% 2.3%
Botswana -1.7% -1.7% -2.0% -20.0% -10.0% -4.9%
Cameroon 3.0% 9.5% 2.1% 1.3% 1.5% 1.7%
Congo 9.3% 16.3% 14.2% -20.0%  4.3% 8.7%
DRC 4.7% 1.3% 0.1% -2.1% 0.1% 1.5%
Eritrea 7.4% 1.6% 5.2% 4.3% 4.1% 3.8%
Ethiopia 14.0% 15.0% 22.3% 23.2%  24.4%  25.4%
Gabon 3.8% 5.3% 2.8% 1.6% 2.1% 2.6%
Ghana -1.2% 10.0% 3.3% 1.6% 1.4% 1.2%
Ivory Coast  3.7% 1.0% 2.1% 2.0% 1.9% 1.8%
Kenya 8.6% 5.0% 4.8% 4.1% 4.4% 4.6%
Mauritius 5.6% 3.7% 2.2% 1.4% 2.2% 2.8%
Mozambique 7.4% 5.1% 1.1% 5.1% -1.1% 0 1.1%
Namibia 3.6% -4.3% 1.5% 0.3% 0.4% 0.5%
Nigeria 12.0% 2.2% 2.3% 3.3% 3.0% 2.8%
Senegal 11.7% 4.2% 3.9% 3.6% 3.5% 3.4%
South Africa 3.3% 1.2% 0.1% -1.0%  0.2% 1.1%
Sudan 9.8% 19.2% 22.0% 26.6% 26.3% 26.0%
Tanzania 8.8% 9.2% 0.5% -20.0% 0.5% 71.1%
Togo 1.6% -1.1% -4.2% n/a -28%  5.7%
Zambia, 2.9% 5.3% 5.3% 6.6% 8.5% 9.7%
Zimbabwe 6.8% -1.6% 0.7% -9.6% -3.3% 0.1%
East Asia and Pacific

Brunei 5.7% 3.2% 1.6% 1.4% 2.4% 3.2%
Cambodia 23.0% 0.6% -0.5% -11.3%  -1.6%  1.2%
China 16.9% 13.5% 17.1% 121%  124% 12.7%
Indonesia 7.4% 6.6% 7.8% 6.5% 6.9% 7.3%
Malaysia 3.9% 10.2% 5.8% 2.7%  -1.4%  -0.2%
Mongolia 3.2% 5.2% 6.4% 3.9% 5.8% 7.4%
Myanmar 3.5% 5.1% 21.4% n/a 3.4% 203.3%
North Korea  3.6% -1.1% 0.8% n/a 4.0% 212.8%
Philippines  5.0% 4.0% 2.7% 2.3% 2.7% 3.0%
Singapore 4.1% 3. 7% 2.2% 1.6% 2.2% 2.7%
Thailand 7.5% 4.1% 1.3% 2.1% 2.0% 2.0%
Vietnam 20.4% 15.4% 13.9% 12.8%  12.9%  13.0%

Notes. * - includes mean forecasts for 2013-2014. CI: Confidence Interval
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Table A3.1 Historical and Forecast Rates of Electricity demand Growth
(continued)

Historical growth Forecast growth, 2015-2020
country

2000-2004 2005-2009 2010-2014* 5% CI  Mean 95% CI

Europe and Central Asia

Albania 3.0% 7.9% -4.5% -4.1% 0.7% 2.0%
Armenia 1.2% 0.6% 7.9% n/a 6.8%  8.6%
Azerbaijan 4.5% -3.6% 5.0% -20.0% -1.3% -0.7%
Belarus 3.7% 2.5% -2.3% -0.5% -1.1%  -1.5%
Bosnia and Herzegovina  4.2% 7.2% -1.6% 1.6% 3.3%  4.4%
Bulgaria 1.6% 0.9% 2.8% 1.8%

Croatia 3.1% 2.7% 0.8% 1.0% 1.6%  2.0%
Cyprus 6.0% 4.3% -1.5% -1.5%  0.0% 1.2%
Georgia -0.4% 7.9% 9.2% 13.6% 12.6% 11.8%
Hungary 0.3% 0.9% -0.7% -1.4%  02% 1.5%
Kazakhstan 6.4% 4.4% 4.3% -3.5% 3.3% 7.6%
Kyrgyzstan -0.1% -3.7% 0.8% 0.7%  0.1%  0.7%
Latvia 3.7% 7.0% -6.1% -0.2%
Lithuania 5.9% -13.1% 8.1% 37.3% 15.1% 14.6%
Macedonia 0.4% 0.9% 0.5% 1.4% 1.2% 1.1%
Malta 3.4% -1.1% 0.8% -1.9% -0.2%  1.1%
Moldova 1.4% 0.4% 0.4% 0.4% 0.4% 0.4%
Poland 1.7% 0.2% 1.2% -1.2% 0.5% 1.8%
Romania 2.9% 0.4% 1.7% 1.0%

Russia 1.7% 1.8% 1.3% 1.4% 1.9% 2.4%
Serbia 1.4% 0.5% 0.4% 0.9% 0.5% 0.3%
Tajikistan 4.0% -0.8% -0.4% -0.3%  -0.3% -0.2%
Turkey 5.9% 6.1% 7.0% -20.0% 2.8% 53.4%
Turkmenistan 6.0% 6.0% 2.6% 1.4% 1.4% 1.3%
Ukraine 1.7% 0.3% 0.2% -2.8% 25%  -2.2%
Uzbekistan 1.0% 1.0% 2.9% 3.6% 3.4% 3.3%
Latin America and Caribbean

Argentina 3. 7% 3. 7% 4.2% 3.4% 3.8%  4.1%
Bolivia, 5.2% 8.4% 6.4% 6.3% 7.1% 7.8%
Brazil 3.1% 5.6% 4.1% 3.8% 4.0% 4.2%
Chile 6.2% 3.0% 3.9% -1.0% 1.6% 3.8%
Colombia 3.3% 3.6% 2.4% 2.2% 21%  2.0%
Costa Rica 3.9% 3.2% 2.3% n/a 2.0% n/a
Cuba 0.4% 2.7% 0.0% -0.8%  0.5%  1.4%
Dominican Republic 9.7% 4.2% 2.6% 2.3% 21%  1.9%
Ecuador 4.0% 10.7% 3.7% -0.6% 2.9% 6.0%
El Salvador 8.6% 4.8% -0.6% -2.0% 02% 1.2%
Guatemala 6.6% 2.1% 2.2% 1.8% 1.8% 1.7%
Haiti 0.3% 1.1% 13.6% 3.3% 2.7%  2.3%
Honduras 10.7% 4.2% 3.5% 2.2% 2.1%  2.1%
Jamaica 2.5% -8.4% 1.7% 2.3% 2.0% 1.8%
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Table A3.1 Historical and Forecast Rates of Electricity Demand Growth
(continued)

Historical growth Forecast growth, 2015-2020

country

2000-2004  2005-2009 2010-2014* 5% CI  Mean  95% CI

Latin America and Caribbean (continued)

Mexico 3.9% 2.2% 3.6% 2.1% 2.0% 2.0%
Nicaragua 6.0% 4.0% 3.6% 3.1% 2.9% 2.8%
Panama 3.8% 5.5% 5.0% 3.0% 2.9% 2.8%
Paraguay -0.9% 1.1% 3.5% -04%  2.2% 2.8%
Peru 5.6% 8.2% 9.1% 7.0% 8.8% 10.4%
Trinidad & Tobago 5.9% 4.0% 5.2% n/a 6.5% n/a
Uruguay 0.2% 8.6% 3.7% 2.3% 3.1% 3.7%
Venezuela 4.7% 2.4% 2.3% 1.7% 2.2% 2.7%
Middle Fast and North Africa

Algeria 6.7% 7.0% 6.3% 5.1% 5.8% 6.3%
Bahrain 8.0% 4.2% 2.3% 0.6% 2.2% 3.5%
Egypt 7.8% 7.0% 6.3% 4T%  AT%  46%
Iran 9.3% 6.2% 2.9% 2.2% 2.2% 2.3%
Iraq -0.9% 13.0% 3.9% 2.1%

Israel 2.8% 4.1% 2.1% 2.1% 2.0% 1.9%
Jordan 6.2% 10.6% 0.7% -20.0% 1.3% 20.7%
Kuwait 7.1% 6.1% 3.2% 3.4% 3.3% 3.3%
Lebanon 5.5% 5.3% 0.7% 1.6% 2.5% 3.1%
Libya 9.3% 8.9% -6.9% n/a 17.6%  86.7%
Morocco 10.0% 4.5% 6.0% 2.2% 3.8% 5.1%
Oman 7.8% 11.3% 13.6% 13.6% 14.3%  15.1%
Qatar 11.5% 19.1% 13.5% 14.1% 13.9% 13.7%
Saudi Arabia 7.9% 7.3% 6.3% 5.1% 6.0% 6.8%
Syria 7.7% 6.6% -14.6% -20.0% -20.0% -20.0%
Tunisia 3.9% 6.4% 3.1% 3.2% 3.7% 4.1%
United Arab Emirates 10.4% 12.2% 1.8% 2.1% 2.1% 2.0%
Yemen 7.9% 12.5% -1.1% 2.5% 2.3% 2.1%
South Asia

Bangladesh 13.5% 11.6% 10.0% 10.3%  10.4%  10.5%
India 5.1% 7.4% 9.2% 9.7% 9.2% 8.6%
Nepal 10.5% 5.3% 7.3% 6.1% 6.0% 5.9%
Pakistan 7.5% 0.2% 0.2% -1.6% -0.1% 1.0%
Sri Lanka 6.6% 3.2% 3.8% 2.2% 2.1% 2.0%
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Table A3.2: Comparison of Forecast Errors across Countries

5 year forecast horizon 10 year forecast horizon

Country sMAPE MdRAE sMAPE MdRAE
Sub-Saharan Africa

Angola 0.09 0.34 0.08 0.26
Benin 0.29 0.7 0.2 0.44
Botswana 0.34 0.66 0.15 0.51
Cameroon 0.01 0.08 0.22 0.88
Congo 0.38 0.89 0.24 0.39
DRC 0.02 0.17 0.08 0.58
Eritrea 0.02 0.23 0.07 0.68
Ethiopia 0.06 0.26 0.38 1.38
Gabon 0.04 0.86 0.03 0.98
Ghana 0.19 0.71 0.13 0.97
Ivory Coast  0.03 0.29 0.03 0.38
Kenya 0.03 0.45 0.15 1.08
Mauritius 0.01 1.02 0.01 0.07
Mozambique 0.06 1.14 0.07 0.78
Namibia 0.07 0.26 0.07 0.99
Nigeria 0.08 0.14 0.08 0.31
Senegal 0.02 0.37 0.03 0.26
South Africa 0.02 0.23 0.03 0.46
Sudan 0.04 0.18 0.13 0.6
Tanzania, 0.02 0.16 0.06 0.31
Togo 0.19 0.36 0.15 0.61
Zambia, 0.02 0.18 0.05 1.09
Zimbabwe 0.04 0.51 0.08 0.58
East Asia and Pacific

Brunei 0.01 0.44 0.04 0.3
Cambodia 0.17 0.84 n/a n/a
China 0.04 0.38 0.06 0.3
Indonesia 0.02 0.13 0.02 0.26
Malaysia 0.03 0.23 0.05 0.36
Mongolia 0.05 0.47 0.04 0.43
Myanmar 0.11 0.84 0.14 2.29
North Korea 0.06 0.62 0.08 0.71
Philippines 0.02 0.49 0.02 0.22
Singapore 0.02 1.03 0.01 0.61
Thailand 0.02 0.96 0.02 0.2
Vietnam 0.02 0.07 0.02 0.09
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Table A3.3: Comparison of Forecast Errors across Countries (continued)

5 year forecast horizon 10 year forecast horizon

Country sMAPE MdRAE sMAPE MdRAE
FEurope and Central Asia

Albania 0.17 0.3 0.26 0.85
Armenia 0.05 0.29 0.07 0.35
Azerbaijan 0.06 0.57 0.09 0.59
Belarus 0.06 0.74 0.08 0.33
Bosnia and Herzegovina  0.08 0.16 0.07 0.21
Bulgaria 0.03 0.73 0.03 0.56
Croatia 0.1 0.66 0.09 1.08
Cyprus 0.05 0.2 0.05 0.31
Georgia 0.04 0.33 0.09 0.35
Hungary 0.08 0.64 0.04 0.34
Kazakhstan 0.02 0.23 0.02 0.08
Kyrgyzstan 0.09 0.6 0.11 0.57
Latvia 0.07 0.29 0.11 0.39
Lithuania 0.28 0.43 0.23 0.79
Macedonia 0.05 0.66 0.06 0.64
Malta, 0.04 0.4 0.06 1.02
Moldova 0.02 0.1 0.02 0.05
Poland 0.03 0.42 0.03 0.96
Romania 0.04 0.49 0.03 0.48
Russia 0.02 0.3 0.02 0.17
Serbia 0.01 0.6 0.02 0.33
Tajikistan 0.04 0.46 0.07 0.71
Turkey 0.05 1.06 0.09 0.63
Turkmenistan 0.01 0.06 0.02 0.05
Ukraine 0.05 0.8 0.04 0.22
Uzbekistan 0.01 0.12 0.02 0.68
Latin America and Caribbean

Argentina 0.03 0.29 0.09 0.66
Bolivia 0.02 0.12 0.11 0.83
Brazil 0.01 0.08 0.11 1.22
Chile 0.03 0.52 0.04 0.16
Colombia 0.01 0.58 0.02 0.46
Costa Rica 0.01 0.65 0.02 0.44
Cuba 0.03 0.64 0.03 0.9
Dominican Republic 0.02 0.94 0.08 0.53
Ecuador 0.04 0.31 0.17 1.25
El Salvador 0.03 0.41 0.07 0.53
Guatemala 0.02 0.58 0.07 0.39
Haiti 0.39 0.92 0.2 1.14
Honduras 0.02 0.95 0.12 0.63
Jamaica 0.2 0.4 0.27 0.86
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Table A3.3: Comparison of Forecast Errors across Countries (continued)

5 year forecast horizon 10 year forecast horizon

Country SMAPE MdRAE SMAPE MdRAE
Latin America and Caribbean (continued)

Mexico 0.02 0.65 0.02 0.31
Nicaragua 0.04 0.68 0.02 0.3
Panama 0.04 0.54 0.03 0.39
Paraguay 0.02 0.47 0.03 0.52
Peru 0.02 0.19 0.02 0.13
Trinidad & Tobago 0.01 0.22 0.07 0.56
Uruguay 0.06 0.94 0.15 0.51
Venezuela 0.01 0.42 0.05 0.82
Middle Fast and North Africa

Algeria 0.08 0.58 0.14 1.24
Bahrain 0.01 0.99 0.07 0.47
Egypt 0.01 0.22 0.02 0.12
Iran 0.01 0.15 0.02 0.21
Iraq 0.26 0.95 0.16 0.66
Israel 0.02 0.61 0.02 0.55
Jordan 0.02 0.51 0.15 0.82
Kuwait 0.01 0.22 0.04 0.32
Lebanon 0.05 0.31 0.06 0.99
Libya 0.07 0.3 0.22 1.15
Morocco 0.05 0.76 0.05 0.35
Oman 0.05 0.24 0.06 0.38
Qatar 0.02 0.11 0.03 0.17
Saudi Arabia 0.06 0.49 0.04 0.36
Syria 0.1 0.07 0.07 0.06
Tunisia 0.02 0.29 0.05 1.13
United Arab Emirates 0.05 0.21 0.05 0.17
Yemen 0.08 0.46 0.09 0.21
South Asia

Bangladesh 0.01 0.05 0.07 0.27
India 0.02 0.18 0.06 0.52
Nepal 0.02 0.18 0.03 0.3
Pakistan 0.01 0.06 0.04 0.47
Sri Lanka 0.03 0.8 0.07 0.51
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