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Motivation
I Forecasting economic time series for developing economies is a

challenging task, especially because of the peculiar idiosyncrasies
they face.

1. There is a bigger element of uncertainty.

2. Other factors not captured in mainstream economic theories play a
significant role.

3. There is a large shadow (informal) economy that is not officially
captured in statistics.

4. Data problems: often only low frequency is available, it is delayed,
it is discontinuous and incomplete etc.
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Motivation . . .
I These idiosyncrasies imply that economic relationships in these

environments are likely to be more unstable with sudden stops,
reversals, turning points, and big jumps—in short, nonlinearities.

I Typical forecasting models—Box-Jenkins, linear and nonlinear
structural econometric models—used in the field are not best suited
for these environments.

I However, models based on computational intelligence systems offer
an advantage through their functional flexibility and inherent
learning ability.

I Nevertheless, they have hardly been applied to forecasting economic
time series in these kinds of environment.
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What we do

I Following the relative successful applications of ANN models to
forecast economic events in US (see Qi, 2001) and Europe (see
Heravi et al., 2004)

I Our aim is twofold:

1. To determine whether forecasting by artificial neural networks
provide superior forecasting performance when compared to
traditional techniques—ARIMA, SMs.

2. To identify the relevant (most influential) inputs in a neural
network that help to forecast GDP growth for African economies.
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How we do

I We achieve these objectives by:

1. Performing in- and out-of-sample forecasts using estimates from
ANN, ARIMA and SEMs on quarterly data for Kenya, Nigeria, and
South Africa—these three account for 54% of the weight
distribution used at AfDB for growth forecasts in Africa.

2. Examining forecast performance using absolute and relative
forecast evaluation criteria: MSPE & MAPE
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Preview of main results

I Results show that ANN performs somewhat better than SEM and
ARIMA models in forecasting GDP growth in developing economies

I This result holds especially when the relevant primary commodity
prices, trade, inflation, and interest rates are used as the input
variables in ANN.

I One explanation for this is because ANN is better able to capture
the non-linear and chaotic behaviour of the important input
variables for growth forecasting in Africa.

I There are, however, some country-specific exceptions—to be shown
later.
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Some practical implications

I Because improvements are only marginal and could be misleading
atimes, it is important that practitioners hedge against wide errors
by using a combination of ANN and SEM for practical applications.

I It is recommended that forecasts from ANN should always be
revalidated with forecasts from SEM.

I Finally, ARIMA models should only be considered as a last resort in
these kinds of environment, as they almost always perform worse
than others.
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Forecasting models
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Artificial neural networks
I ANNs are models designed to mimic the biological neural system—

especially the brain and are composed of processing elements called
neurons.

I Each neuron in the network receives signals from external stimuli or
other nodes and processes this information locally through an
activation function; after which it produces a transformed output
(forecast)

I The model is formed intelligently from the characteristics of the
data, and hence, does not require any prior model specification.

I We adopt a single hidden layer feed-forward network, characterized
by a network of three layers of simple processing units.
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Figure: Topological structure of a feed-forward neural network
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ANN . . . Activation function
I Using the Sigmoid activation function

Figure: Structure of a Sigmoid (Logistic) neuron

I We show details of the backpropagation algorithm in paper
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The ARIMA time series approach
Figure: Schematic representation of Box-Jenkins methodology

Source: Adapted from Makridakis et al 2008
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The structural econometric approach
I In the SEM approach, economic theory is used to develop

mathematical statements about how a set of observables
(endogenous) variables, y , are related to another set of observables
(explanatory) variables, x

I Our structural econometric specification follows the style of the
linear specification in Tkacz (2001). Thus

yt = α +
J∑

j=1
β · Xj + ε (1)

I In order to obtain the best linear models from a broad search, the
explanatory variables are allowed to enter individually at levels and
with various lag combinations between 1 and 4
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Results
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Figure: South Africa—trained neural network for GDP growth
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Figure: Nigeria—trained neural network for GDP growth
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Figure: Kenya—trained neural network for GDP growth
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Figure: South Africa—generalized weights for covariates
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Figure: Nigeria—generalized weights for covariates
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Figure: Kenya—generalized weights for covariates
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Figure: South Africa—Actual versus model predictions
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Figure: Nigeria—Actual versus model predictions
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Figure: Kenya—Actual versus model predictions

Y = -1.21 + 1.45X ;  R2 = 0.63

0.0

2.5

5.0

7.5

10.0

-5 0 5 10 15

Actual values

P
re

di
ct

ed
 v

al
ue

s

Prediction from ANN

Y = -1.79 + 1.66X ;  R2 =  0.87

0

4

8

-5 0 5 10 15

Actual values

P
re

di
ct

ed
 v

al
ue

s

Prediction from structural model

Y = -0.21 + 1.09X ;  R2 = 0.79

-5

0

5

10

-5 0 5 10 15

Actual values

P
re

di
ct

ed
 v

al
ue

s

Prediction with ARIMA

-5

0

5

10

0 10 20

Actual values

P
re

di
ct

ed
 v

al
ue

s

ARIMA

Neural network

Strucutural model

Actual vs. combined model predictions

Oduor, Simpasa & Chuku (AfDB) Intelligent forecasting of growth in Africa Th. April 27, 2017 24 / 28



Forecast performance measures

Table: Forecast performance comparison

South Africa Nigeria Kenya
MSE MAPE R2 MSE MAPE R2 MSE MAPE R2

ARIMA 0.971 37.22 0.84 19.784 74.815 0.55 1.849 49.343 0.79
Structural model 0.928 36.01 0.85 3.623 58.538 0.91 1.187 36.731 0.87
Neural network 0.725 34.51 0.88 0.937 56.182 0.97 3.334 61.589 0.63
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Recap and Conclusion
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Recap and Conclusion

I We set out to determine the relative performance of ANN vs.
ARIMA and SEM in forecasting GDP growth in selected African
frontier economies.

I ANN models perform somewhat better than SEM and ARIMA
when the relevant commodity prices, trade, inflation, and interest
rates are used as input variables.

I Because of idiosyncrasies, practitioners should hedge against wide
errors by using a combination of ANN and SEM

I Details must be on a case-by-case basis
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The End
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