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1 Introduction

Forecasting economic time series is a challenging task, and more so for developing economies

where a host of factors usually not accounted for in mainstream economic thinking play

significant roles in shaping the overall macroeconomic outcomes in these environments. The

popularity of computational intelligence systems—particularly artificial neural networks—

for dealing with nonlinearities and forecasting of time series data has continued to receive

substantial attention in the literature, especially in the last two decades (see recent examples

and reviews in Giusto & Piger, 2017; Teräsvirta, Van Dijk, & Medeiros, 2005; Crone,

Hibon, & Nikolopoulos, 2011; De Gooijer & Hyndman, 2006; Ghiassi, Saidane, & Zimbra,

2005). The major attraction of this class of models lies in their flexible nonlinear modeling

capabilities. With an artificial neural network (ANN), for example, there is no need to

specify a particular model form, rather, the model is adaptively formed based on the features

presented from the data, making it appropriate for situations where apriori theoretical

expectations do not hold or are violated.

But despite the popularity and advantages of the ANN approach, they have hardly

ever been applied to forecasting economic time series in developing economies in spite of

the numerous applications that show their superior performance (under certain conditions)

over traditional forecasting models in developed economies. For examples, Tkacz (2001)

finds that neural networks outperform linear models in the prediction of annual GDP

growth for Canada, but not quarterly GDP growth; Heravi, Osborn, and Birchenhall

(2004) who that neural network models dominate linear ones in predicting the direction

of change of industrial production for European economies, but linear models generally

outperform neural network models in out of sample forecasts at horizons of up to a year;

Feng and Zhang (2014) using ANN versus GM(1,1) models to perform tendency forecasting

of economic growth in cities of Zhejiang, China, find that forecast results from ANN were

better and more effcient that those from the GM model.

Our objective is to determine whether forecasting by artificial neural networks, which

have an inherent learning ability, provide superior forecasting performance when compared

to traditional techniques such as time series and structural econometric models. We provide
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evidence from in- and out-of-sample forecast experiments on selected frontier economies in

Africa. Specifically, we use neural networks to forecast GDP growth in South Africa, Nigeria,

and Kenya and compare the results with traditional ARIMA and structural econometric

models. We examine the forecast performance measures using absolute and relative forecast

evaluation criteria—the mean squared prediction error and the mean absolute percentage

error.

Overall, our results show that artificial neural network models perform somewhat

better than structural econometric models and ARIMA models in forecasting GDP growth

in developing economies, especially when the relevant primary commodity prices, trade,

inflation, and interest rates are used as the input variables. The most probable explanation

for the superior performance of ANN models is because they are better able to capture

the non-linear and chaotic behaviour of the important input variables that help to explain

growth in many developing economies in Africa. There are, however, some country-specific

exceptions, and also because the improvements are only marginal, it is important that

practitioners hedge against wide errors by using a combination of neural network and

structural econometric models for practical applications.

Moreover, some practical implications emerge from the present study. First, to the

extent that complexity is not overemphasized, parsimonious artificial neural network

models can be used to provide benchmark forecasts for economic and financial variables

in developing economies that are exposed to potential chaotic and external influences on

growth determination Second, like many statistical forecasting models, neural network

systems are capable of also misleading and producing outlier forecasts at certain data

points (as we would see in the cases of Nigeria and Kenya), it is recommended that forecasts

from neural network models should always be revalidated with forecasts from a structural

econometric model. Finally, time series ARIMA models should only be considered as a last

resort for forecasting in these kinds of environment, as they almost always perform worse

than others, perhaps because of the sudden changes and chaotic pattern of macroeconomic

variables in developing economies.

The rest of the paper is organized as follows. In Section 2, we present the forecasting
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models considered in the paper with some description of the algorithm for backpropagation

in neural network models and the forecast performance measures used. In Section 3, we

describe the data, sample, and features of the input variables. In Section 4, we present the

results of the forecasting exercise and discuss some implications. Section 5 concludes.

2 Forecasting models

In this section, we present the different forecasting models used in our forecasting compe-

tition. Because our emphasis is on computational intelligence forecasting, we present a

fairly elaborate description of the use of artificial neural networks in forecasting economic

growth in a developing economy context; while the more familiar time series and structural

econometric models are discussed briefly.

2.1 Artificial neural networks

Artificial neural networks are models designed to mimic the biological neural system—

especially the brain and are composed of interconnected processing elements called neurons.

Each neuron receives information or signals from external stimuli or other nodes and

processes this information locally through an activation function; after which it produces

a transformed output signal and sends it to other neurons or external output. It is this

collective processing by the network that makes ANN a powerful computational device

and able to learn from previous examples which are then generalized to future outcomes

(see Zhang, Patuwo, & Hu, 1998; Hyndman & Athanasopoulos, 2014). A prototypical

architecture of a multi-layer neural network system is depicted in Figure 1

ANN models have become popular in forecasting economic time series because of

their ability to approximate a large class of functions with a high degree of accuracy (see

Khashei & Bijari, 2010).1 So that the usual problematic issues encountered in forecasting

macroeconomic indicators; seasonality, nonstationarity, and nonlinearity are handled by

1Some recent examples of economic and financial applications of computational intelligence models
and its performance competitions with other models include Giusto and Piger (2017); Qi (2001); Sokolov-
Mladenović, Milovančević, Mladenović, and Alizamir (2016); Crone et al. (2011); Clements, Franses, and
Swanson (2004); Heravi et al. (2004))
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Figure 1: Topological structure of a feed-forward neural network

Note: A multi-layer perceptron with the first (input) layer reviving external information and being
connected to the hidden layer through acyclic arcs which transmit signals to the last layer, outputting the
solution (or forecast in this case).

this class of models (see Tseng, Yu, & Tzeng, 2002; Zhang & Qi, 2005). But more than

that, the fact that the model is formed intelligently from the characteristics of the

data, and hence, does not require any prior model specification, makes ANN suitable and

appropriate for environments where theoretical guidance is not available, or is unreliable,

to suggest the appropriate data generating process of an economic series.

We use the most common and basic structure of ANN models used in time series

forecasting; see Zhang et al. (1998), Hippert, Pedreira, and Souza (2001), and De Gooijer

and Hyndman (2006) for thorough surveys of this literature. In particular, we adopt a

single hidden layer feed-forward network, characterized by a network of three layers of

simple processing units (see Figure 1). The relationship between the outputs (yt) and the

inputs (xt) of the model has the following form;

yt = ω0 +

q∑
j=1

ωj · S

(
ω0j +

p∑
i=1

Ωij · xt−i

)
+ εt, (1)

where {ωj, j = 0, 1, . . . , q} and {Ωij, j = 0, 1, . . . , q; i = 0, 1, . . . p} are the model parame-

ters, which represent the connection weights. Specifically, ωj represents the weights from

the hidden to the output nodes, and Ωij denotes a matrix of parameters from the input
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nodes to the hidden-layer nodes. While p is the number of input nodes (or neurons) which

are comparable to the number of predictor variables in a standard regression framework; q

is the number of units in the hidden layer; S(·) is the choice of the activation (transfer)

function used; and ε is the error term.

The activation function determines the relationship between the inputs and outputs

of a node and a network, and it is used to introduce nonlinearity in the model (Zhang

et al., 1998). Although, according to Chen and Chen (1995), any differentiable function

qualifies as an activation function. For application purposes, only a small number of “well

behaved” functions are used.2 Typically, the sigmoid (logistic) function, the hyperbolic

tangent (tanh), the sine or cosine, and linear functions. For this study, we use the sigmoid

function, depicted in Figure 2which is the most popular choice in forecasting environments

(see Qi, 2001; Zhang & Qi, 2005). Thus,

S(χ) =
1

1 + exp(−χ)
. (2)

Because, in the literature, it is not clear whether different activation functions have major

effects on the performance of the networks, we also experiment with the hyperbolic tangent

function,

H(χ) =
1− exp(−2χ)

1 + exp(−2χ)
. (3)

The next item for the ANN modelling process is to choose the architecture of the model.

This specifically involves choosing the five most important parameters of the model: the

number of input nodes (predictor variables and their lags), the number of hidden layers, the

number of hidden nodes, and the number of output nodes(variable to forecast). The choice

of the architecture is the most important decision in a forecasting environment because it

determines how successfully the model can detect the features, capture the pattern in the

data, and perform complicated non-linear mappings from input to output variables (Zhang

et al., 1998)

2By well behaved, it is typically supposed that the eligible class of functions should be continuous,
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Figure 2: Structure of a Sigmoid (Logistic) neuron

We have followed the tradition in most forecasting applications (for examples, Tkacz

(2001); Qi (2001); Zhang and Qi (2005); Kaytez, Taplamacioglu, Cam, and Hardalac (2015);

Feng and Zhang (2014)), by using only one hidden layer with a small number of hidden

nodes in our application. The reason is because although there are many approaches to

selecting the optimal architecture of an ANN model, the process is often complex and

difficult to implement. Moreover, none of the available methods can guarantee delivery of

the optimal solution of parameters for all practical forecasting problems.3 Furthermore,

there is also theoretical evidence suggesting that single layer architectures can adequately

approximate any complex linear function to any desired level of accuracy, and has better

performance in terms of not overfitting models (see Zhang et al., 1998).

Once a decision has been taken on the architecture of the ANN (i.e., the number of

predictors, the number of lags, and the hidden structure), the next step is to train the

model using the data. Training involves a minimization process in which arc weights of

a network are iteratively modified to minimize a criterion (often the mean square error)

between the desired and actual output for all output nodes over all input patterns (Zhang

bounded, monotonically increasing and differentiable (Zhang, 2003).
3Typical approaches for selection of ANN model architecture are: (i) the empirical approach, which

uses chooses parameters based on the performance of alternative models (Ma & Khorasani, 2003); (ii) Fuzzy
inference methods, where the ANN is allowed to operate on fuzzy instead of real numbers (Leski & Czoga la,
1999); (iii) pruning algorithms that respectively add or remove neurons from the initial architecture using
a pre-defined criterion (Jain & Kumar, 2007; Jiang & Wah, 2003); and (iv) Evolutionary strategies that
use genetic operators to search over the topological space by varying the number of hidden layers and
hidden neurons (see a recent review in Khashei & Bijari, 2010).
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et al., 1998). Again, although there exist many optimization methods to choose from, there

is no algorithm that guarantees delivery of the global optimal solution in a reasonable

amount of time; hence, we adopt the most popularly used optimization method which gives

the “best” local optima (see Sa labun & Pietrzykowski, 2016; Zhang et al., 1998)

Specifically, we train the model using the Backpropagation (abbreviated from “backward

propagation of errors”) algorithm, which uses a gradient steepest descent method. Using

this algorithm, the step size, which governs the learning rate of the model and the magnitude

of weight changes, must be specified. To control for some of the known problems of the

gradient descent algorithm, for examples, slow convergence and sensitivity to the choice

of the learning rate, we follow Williams and Hinton (1986) by including an additional

momentum parameter which allows for larger learning rates and ensures faster convergence

in addition to its potential to dampen tendencies for oscillations.

The process of minimizing the errors using the BP algorithm involves comparing the

result from the output layer with the desired result; if the errors exceed the threshold,

then the value of the errors will be fed back to the inputs through the network, and the

weights of nodes in each layer will be changed along the way until the error values are

sufficiently small (see Lippmann, 1987; Feng & Zhang, 2014). To be more concrete, let m

be the number of layers in the network, ymj represents the output from node j in layer m,

y0j = xj denotes the external input (stimulus) at node j, Ωm
ij is the weight of the connection

between node i in layer m and node j in layer m+ 1, and θmj is the threshold at node j in

layer m. Then, the iterative steps in the BP algorithm are as follows.

Step 1. Initialize weights: Initialize all weights and thresholds to a small random value.

Typically, ω0 ∈ (−1, 1); Ω0
ij ∈ (−1, 1)

Step 2. Present input and desired output: Present the input vector x0, x1, . . . xN and

specify the desired outputs d0, d1, . . . dN . Note that the input vector could be new

on each trial or typically, samples from a training set which are presented cyclically

until weights stabilize.

Step 3. Calculate actual outputs (forecasts): Feed the signal forward and use the
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Sigmoid function to calculate outputs y0, y1, . . . yN . That is, calculate

ŷmj = S
(
χm
j

)
= S

(∑
i

Ωm
ij · ym−1i + θmj

)
, (4)

which involves processing the output at each node j from the first layer through the

last layer until it completes the network.

Step 4. Calculate errors in output: Calculate the error for each node j in the output

layer as follows;

δmj = ŷmj
(
1− ŷmj

) (
dj − ŷmj

)
(5)

where the error is the difference between the computed output and the desired target

output.

Step 5. Calculate errors in hidden nodes: Calculate the error for each node j in the

hidden layer as follows;

δm−1j = S ′
(
χm−1
j

)∑
i

Ωij · δmi , (6)

which describes the process of feeding back errors layer by layer.

Step 6. Update the weights and thresholds: Using a recursive algorithm starting at the

output nodes and working backwards, adjust the weights and thresholds as follows;

Ωm
ij (t+ 1) = Ωm

ij (t) + ηδmj ŷ
m−1
i + α

[
Ωm

ij (t)− Ωm
ij (t− 1)

]
(7)

θmj (t+ 1) = θmj (t) + ηδmj + α
[
θmj (t)− θmj (t− 1)

]
(8)

where α ∈ (0, 1) is the momentum parameters, η ∈ (0, 1) is the learning rate, and t is

the iteration counter.

Step 7. Loop until convergence: Go back to Step 2 and repeat the iteration up to Step 6
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until the network error is sufficiently small. That is, to minimize

E =
1

N

N∑
n=1

(εi)
2 , (9)

or more precisely,

1

N

N∑
n=1

yt −
ω0 +

q∑
j=1

ωj · S

(
ω0j +

p∑
i=1

Ωij · xt−i

)2
 (10)

2.2 The ARIMA time series approach

The autoregressive integrated moving average (ARIMA) time series approach to forecasting

has remained an attractive approach to economists because of its ability to use purely

technical information (past values)— with no requirement for economic fundamentals and

theory— to forecast economic time series (see the recent survey in De Gooijer & Hyndman,

2006). Moreover, its ability to parsimoniously handle stationary and non-stationeries series,

typical features of economic variables, has helped to further entrench it in the discipline.

In an ARIMA model, the future values of a variable are modelled as a linear function

of past observations and random errors. So that, the data generating process has the form;

yt =θ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p+

+ εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q,
(11)

where yt are actual values of the variable, εt are the error terms which are assumed to

be independently and identically distributed with mean zero and constant variance σ2;

{φi, i = 1, 2, . . . , p} and {θj, i = 0, 1, 2, . . . , q} are the model parameters, with p and

q as integers indicating the order of the autoregressive (AR) and moving average (MA)

terms, respectively.

Following the pioneer works of Yule (1926) and Wold (1938), Box and Jenkins (1976)

developed a practical approach for time series analysis and forecasting now known as the

Box-Jenkins ARIMA methodology (see Box, Jenkins, Reinsel, & Ljung, 2015; De Gooijer &

Hyndman, 2006). The Box-Jenkins methodology involves three phases of iterative steps: (i)
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Model identification phase (i.e., data preparation and model selection), (ii) Estimation and

post estimation diagnosis phase, and (iii) Application phase. Figure 3, which is adapted

from Makridakis, Wheelwright, and Hyndman (2008), depicts a schematic representation

of the Box-Jenkins methodology for time series analysis.

Figure 3: Schematic representation of Box-Jenkins methodology

Source: Adapted from Makridakis et al. (2008)

In the identification phase, two main activities take place: (i) data preparation, and

(ii) model selection. Data preparation is required because economic time series are often

non-stationary and characterized by seasonality; therefore, data transformation is required

to make the series stationary. Inducing stationarity ensures that the mean, variance, and

autocorrelation structure of the series are not dependent on time. Whenever stationarity is

lacking, it can be induced by applying differencing or power transformations techniques

before an ARIMA model can be fitted. To select plausible models, Box and Jenkins (1976)
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show that if a time series is generated by an ARIMA, it should have some theoretical

autocorrelation properties; and by matching the empirical autocorrelation properties with

the theoretical autocorrelation properties using the autocorrelation function (ACF) and

partial autocorrelation function (PACF) from sample data, one can identify the order of

the ARIMA model (see Hyndman & Athanasopoulos, 2014; Zhang, 2003)

The second phase of the Box-Jenkins methodology involves the estimation of the model

parameters. This involves a non-linear optimization procedure that seeks to minimize an

overall measure of errors– typically by maximum likelihood estimation (MLE). After the

model has been estimated, it remains to check for model adequacy; that is, whether the

model assumptions about the errors, εt, are satisfied. This is typically done by plotting

the ACF/PACF of the residuals, conducting the Portmanteau test among others statistics.

If the model is not judged adequate, the researcher restarts the process from phase one,

using information from the diagnostics tests to identify a more plausible model.

Once the researcher is satisfied that the most plausible model has been selected, the

next step is to generate h-step forecasts of the variable yt, where h is the forecast horizon.

Three different, but related, types of forecasts can be considered: a point forecast, an

interval forecast, and a density forecast. An appropriate loss function is used to determine

the optimal h-step ahead point forecast. The interval forecasts consist of a lower and

upper bound which contains the actual values with a certain probability, while the density

forecast provides a complete characterization of the future observations yT+h, which can

be used to construct any sort of point or interval forecast (see Franses, Dijk, & Opschoor,

2014).

2.3 The structural econometric approach

In the structural econometric approach, economic theory is used to develop mathematical

statements about how a set of observables (endogenous) variables, y, are related to another

set of observables (explanatory) variables, x (Reiss & Wolak, 2007). Our structural

econometric specification follows the style of the linear specification in Tkacz (2001). In
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particular, the structural econometric forecast equation for output growth is of the form

yt = α +
J∑

j=1

β ·Xj + ε (12)

where y is the endogenous variable, output growth, and Xj,t are the explanatory variables.

In order to obtain the best linear models from a broad search, the specification is broadened

so that the explanatory variables in Eq. (12) are allowed to enter individually at levels and

with various lag combinations between 1 and 4

2.4 Forecast performance measures

To ascertain the forecast performance of alternative models, or more precisely how well the

forecasting models are able to reproduce the already known data, we follow the common

practise of keeping P observations apart in order to use it to ascertain the the h-step ahead

forecast ŷT+h+i|T+i = E[yT+h+i|T+i] for i = 0, . . . , P − h from the models based on data

from the first T observations. In particular, we split the data into two overlapping parts,

the first 75 percent of the data series, T , are used for training and estimation purposes and

the latter 75 percent of the series (or hold-out sample), P , are used for testing the forecast

performance of the models.

There are several formal and informal ways to measure the forecasting performance of

a model (see Hyndman & Athanasopoulos, 2014). The most popular ones are those based

on the loss function upon which the model is based—i.e., the forecast errors. We use one

of the most popular criterion in this category—the mean squared prediction error [MSPE],

which can be computed as

MSE(h) =
1

P − h+ 1

t=0∑
P−h

(yT+h+i − ŷT+h+i|T+i)
2

=
1

P − h+ 1

t=0∑
P−h

e2T+h+i|T+i,

(13)

where P is the number of forecasts, h is the forecast horizon, here one-step ahead forecast,

and e are the forecast errors.
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Although the MSE helps to facilitate comparison of models for one country, it does

not necessarily help in comparing the forecast performance of different models between

countries having different scales of input variables as in our case. To facilitate comparison

among models and between countries, we also consider an alternative standardized forecast

performance measures relative performance—i.e., the mean absolute percentage error

(MAPE) given as

MAPE(h) =
100

P − h+ 1

t=0∑
P−h

∣∣∣∣yT+h+i − ŷT+h+i|T+i

yT+h+i

∣∣∣∣ (14)

Based on the MSE and MAPE criteria, the model with the smallest value is the preferred

model as it gives the most accurate forecast among the competing models.

3 Data and sample

Data is mostly retrieved from the IMF EcOS (IFS) database and supplemented with data

from publications by country authorities. We use quarterly data from 1970 to 2016, a total

of 188 observations, for three of the five biggest economies in terms of the size of GDP

in sub-Saharan Africa: South Africa, Nigeria, and Kenya. These countries account for

about 54 percent of the weight distribution used by the African Development Bank (AfDB)

for computing growth forecasts in Africa. Hence, correctly forecasting growth in these

economies is crucial for the accuracy of overall growth forecasts in sub-Saharan Africa.

The output forecast variable for each country is the growth rate of GDP, while the input

variables vary by country. The differences in input variables for each country is designed

to capture the structural characteristics of each economy, especially as it relates to the

composition of its merchandise export. In particular, the input variables that are consistent

across countries are the interest rates (the repo rate for South Africa, the discount rate

for Nigeria, and the deposit rate for Kenya), the CPI inflation and the volume of trade.

As for the input variable that varies across countries, we use the most country-relevant

commodity price series because of the differences in the nature of commodity dependence

among countries: gold prices for South Africa, crude oil prices for Nigeria, and coffee prices
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for Kenya.

The data series are divided into two overlapping periods; data from 1970Q1 until

2004Q4 are used for training and estimation, while our out-of-sample forecasts start from

the first quarter of 1982 until last quarter in 2016.

4 Results

In presenting and discussing the results from the forecasting exercise, we place more

emphasis on the results from the artificial neural network forecasts and compare its

performance with the traditional ARIMA and structural econometric model for each

country. The neural network models are implemented in R using the “neuralnet” package

by Günther and Fritsch (2016), the ARIMA models are also implemented in R using

the “auto.arima” function in the “forecast” package, which implements a variation of

the Hyndman and Khandakar algorithm combining unit root tests, minimization of the

AICc and MLE to obtain the best ARIMA model (see the documentation in Hyndman &

Khandakar, 2008; Hyndman & Athanasopoulos, 2014).

In Figures 4 to 6, we plot the trained neural network model for prediction of GDP

growth rates in South Africa, Nigeria, and Kenya. They reflect the basic topology of the

trained neural network. In particular, they are based on a single hidden layer feed-forward

perceptron and three neurons for South Africa and Nigeria, and four neurons for Kenya.

The logistic (sigmoid) activation function is used to relate the inputs to the outputs, and

the synaptic weights are computed by resilient backpropagation with weight backtracking

as in Riedmiller (1994). In Figures 4 to 6, the plots includes the trained synaptic weights,

the black lines showing the connections between neurons in different layers; the bias term

added to each step often interpreted as the intercept in a linear model, the blues lines; and

the overall error and number of steps required to achieve convergence.

Because it is difficult to interpret the topology from a neural network, we are not able

to put any structural interpretation on the weights and bias factors shown in Figures 4

to 6. Suffice it to state, however, that the training algorithms converge and therefore are
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Figure 4: South Africa—trained neural network for GDP growth
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ready for use in forecasting. In particular, convergence is achieved after 20832, 306946,

and 4182000 iterations in South Africa, Nigeria, and Kenya respectively. Although the

error level for Nigeria is somewhat larger than those of South Africa and Kenya, the net

for Kenya is particularly more complex as it required one additional neuron in the hidden

layer (i.e. a total of four hidden neurons as opposed to three for the other countries) and

many more iterations to achieve convergence

Interpretation of neural network models is usually done based on an examination of

the effect of the input (or independent) variables on the prediction of the model. One

approach is to study the effect of each input individually on each neuron in the network.

This approach is problematic because it ignores the combined effect of one input on all

units in the neural network. Therefore, to examine the relative importance of the inputs

variables to the response variable in our neural network model, we follow the methodology in
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Figure 5: Nigeria—trained neural network for GDP growth
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required 306946 steps until the absolute partial derivatives of the error function were smaller than 0.001

Intrator and Intrator (2001) which seeks to combine the effect of the inputs and the network

architecture on all units in the network by studying the derivative of the prediction with

respect to each covariate. This methodology involves the computation of the generalized

weights which are then used to determine which variables have a linear effect, no effect, or

a nonlinear effect on the predicted variable.

In Figures 7 to 9, we plot the generalized weights measuring the relative contribution of

each covariate towards the prediction of the response variable, GDP growth. In particular,

Panels 1 to 4 of Fig. 7 indicates that the price of gold, trade, interest rates and inflation

rate are all important contributors to the prediction of GDP growth in South Africa. They

are important because the generalized weights do not all cluster around point zero on the

horizontal axis. Moreover, there is also evidence, though weak, to suggest that the effect of

commodity prices, trade, interest rates, and inflation on GDP growth in South Africa is

non-linear since the variance from zero of some generalized weights exceeds one.
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Figure 6: Kenya—trained neural network for GDP growth
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For Nigeria, the results are slightly different, apart from a few outliers, most of the

generalized weights cluster around zero(see Panels 1 to 4 of Fig. 8), indicating that the

impact of commodity prices, trade, interest rates, and inflation is mostly linear with weak

evidence of significance. For Kenya, the results are quite fascinating, the generalized

weights for the commodity price input and the trade input (Panels 1 and 2 of Fig. 9) are

particularly almost evenly dispersed between -20 and 40 for commodity prices and -5 and

5 for the trade variable. The implication is that commodity prices and trade volumes are

significant and nonlinear determinants of GDP growth in Kenya, the results for inflation in

Panel 4 of Fig. 9 indicates that the influence of inflation is rather weak and nonlinear

The relative performance of the neural network model versus the linear and ARIMA

models are assessed by visualizing the scatter plots of the respective model predictions versus

the actual observed values. In Figures 10 to 12, we plot the actual versus model implied
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Figure 7: South Africa—generalized weights for covariates
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Note: A plot of the generalized weights for each covariate for the response variable GDP
growth based on Intrator and Intrator (2001) which demonstrates the effect of each individual
input on the response variable—GDP growth for South Africa.

forecasts for GDP growth in South Africa, Nigeria, and Kenya along with information on

the line of best fit for the scatter plots. Figure 10 depicts the results for South Africa;

Panels 1, 2, and 3 show the predictions from the neural network, the linear model, and the

ARIMA model, where the selected optimal parsimonious model is an AR(3) and MA(2)

combination with AICc 632.55; while Panel 4 is a plot of the scatter of all the predictions

from the three models versus the actual values.

By visual inspection, we see that the predictions made by the neural network model

(Panel 1 of Fig. 10) are, in general, more concentrated around the regression line of best

fit than the results from other models. Where perfect alignment with the line of best fit

would imply an MSE of 0, and thus an ideal perfect forecast. In particular, the slope of the
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Figure 8: Nigeria—generalized weights for covariates
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Note: A plot of the generalized weights for each covariate for the response variable GDP
growth based on Intrator and Intrator (2001) which demonstrates the effect of each individual
input on the response variable—GDP growth for Nigeria.

line of best fit for the ANN model is steepest at 1.67, compared to 1.65 in the linear model

and 1.09 in the ARIMA model, and it also has the highest R-squared of 0.88, compared to

0.85 in the structural econometric model and 0.84 in the ARIMA model.

The results for South Africa show that although the neural network model improves

the forecasting accuracy over the structural and ARIMA models, the improvement is only

marginal. Specifically, in terms of improvements in the mean absolute percentage error,

the ANN model only achieves a marginal 1.5 percentage points improvements over the

structural model, and a 2.71 percentage points improvement over the ARIMA model (see

Table 1). This is an indication that, for GDP growth forecasting in South Africa, although

the structural and ARIMA model performs well in capturing the patterns of the data, the
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Figure 9: Kenya—generalized weights for covariates
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Note: A plot of the generalized weights for each covariate for the response variable GDP
growth based on Intrator and Intrator (2001) which demonstrates the effect of each individual
input on the response variable—GDP growth for Kenya .

neural network model delivers a much more precise forecast, especially when the inputs

include commodity prices, trade, inflation and interest rates. The forecast performance

measures—the mean square error (MSE), the mean absolute percentage error (MAPE),

and the R-squared—presented in Table 1 for South Africa corroborate the conclusions

from the visual inspection of Fig. 10. As the ANN model has the lowest MSE and MAPE

followed by the structural model and the ARIMA model.

For Nigeria, although the ranking of the forecast performance of different models is

similar to that of South Africa, there are, however, some important differences. The

selected ARIMA model is an AR(3) and MA(3) combination which returned an AICc of

1089.24. In Panel 1 of Figure 11, we observe that although the artificial neural network
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Figure 10: South Africa—Actual versus model predictions
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returns worse predictions for a few data points (outliers) its overall forecasting capability

is superior to the structural and time series models. In particular, the R-squared for the

ANN model is 0.97, much higher than the coefficient for the ARIMA model, 0.55, and the

structural model 0.91.

The surprising thing about the performance of the ARIMA model in forecasting GDP

growth in Nigeria is that it performs so poorly that it can hardly stand a chance in any

competition with the ANN and structural model. In precise terms, the difference between

the MSE for the ANN model of 0.93 and the ARIMA model of 19.78 is significant and using

the MAPE criterion, the ARIMA model predictions are about 18 percentage points worse

than the ANN predictions. For practical purposes, however, it seems most appropriate to
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Figure 11: Nigeria—Actual versus model predictions
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recommend the structural model for forecasting in Nigeria because of its overall regularity,

instead of the ANN model with better performance statistics but occasional erratic and

outlier predictions.

For Kenya, the results from the forecast competition are at stark difference with the

others. Specifically, like the other countries, the neural network architecture for Kenya

has four inputs, but unlike the other countries, it has four neurons in the hidden layer.

The selected optimal parsimonious ARIMA has an AR(3) and MA(2) specification with an

AICc of 741.09. From the visual inspection of Figure 12, we observe that the ANN model

performs poorly when compared to the performance of the structural econometric model

and the ARIMA model.
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Figure 12: Kenya—Actual versus model predictions
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In general, the ranking of the forecast performance of the three models for Kenya is as

follows: first—structural econometric model, second—ARIMA model, and third—artificial

neural network model with their receptive R-squared coefficients being 0.87, 0.79 and 0.63.

It is important to notice from Panels 1 and 3 of Fig. 12 that even though the performance

measures seem to favour the ARIMA model over the ANN model, there is a sense in which

it would be better to use the ANN model over the ARIMA model for practical applications;

because for selected data points, the ARIMA model gives predictions that are significantly

different from the actual values.

Overall, the results show that artificial neural network systems perform slightly better in

forecasting GDP growth in developing economies that depend highly on primary commodity
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Table 1: Forecast performance comparison: ANN, Structural model and ARIMA

South Africa Nigeria Kenya

MSE MAPE R2 MSE MAPE R2 MSE MAPE R2

ARIMA 0.971 37.22 0.84 19.784 74.815 0.55 1.849 49.343 0.79
Structural model 0.928 36.01 0.85 3.623 58.538 0.91 1.187 36.731 0.87
Neural network 0.725 34.51 0.88 0.937 56.182 0.97 3.334 61.589 0.63

exports with its attendant price volatility. The reason that neural network models perform

better than ARIMA models and some structural econometric models is most probably

because it is able to capture the non-linear and chaotic behaviour of major input variables

like commodity prices, economic instability and interest rates for forecasting the response

variable—GDP growth—in these kinds of environment.

5 Conclusion

How to improve forecasts accuracy in an economic environment with potential for sudden

change and volatility often inherited from input variables is an important question that

forecasters of economic and financial variables in developing economies are faced with. This

study examines the relative performance of artificial neural networks versus traditional time

series models and structural econometric models in forecasting GDP growth for selected

frontier economies in Africa, using quarterly data from 1970 until 2016.

Using absolute and relative forecast performance measures, the results show that

artificial neural networks, in many cases, perform better than structural econometric

models and ARIMA models. Our results are somewhat consistent with the results for

developed economies obtained in, for examples, Tkacz (2001), Qi (2001), and Heravi et

al. (2004). At least, three practical implications can be drawn from the results. First,

parsimonious artificial neural networks models can be used to provide benchmark forecasts

for GDP growth rates in developing economies that are exposed to potential chaotic

influences from commodity prices, external factors, and even political economy factor

because this class of model is better able to learn the system and capture the nonlinearities

inherent in the input variables. Second, neural networks systems are also capable of
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misleading and producing outlier forecasts at certain data points, as we see in the cases of

Nigeria and Kenya. Therefore, we recommended that forecasts from neural network models

should be revalidated with forecasts from a structural econometric model. And finally,

time series ARIMA models should only be considered as a last resort for forecasting in

these kinds of environment, as they perform poorly mainly because of the sudden changes

and chaotic patterns of macroeconomic variables in developing economies.
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