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Abstract
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Finally, we argue theoretically that, if we interpret our findings as deviations from rational expectations
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1 Introduction

Understanding the international linkages that affect domestic inflation is important for modelling as well as

for forecasting. However, the evidence for emerging market economies (EMEs) is rather limited and generally

showcases the apparent discrepancy with the inflation dynamics in the U.S. and other advanced economies

(Mandalinci (2015), Pincheira and Medel (2015), Pincheira and Gatty (2016)).

The existing literature focusing on inflation forecasting for EMEs has produced few studies with only a

limited cross-section and time series dimension in some cases. Often those studies tend to cover one to three

countries (Liu and Gupta (2007), Aron and Muellbauer (2012), Ögünç et al. (2013), Chen et al. (2014),

Balcilar et al. (2015), Medel et al. (2016), Altug and Çakmakli (2016)), the exception being Mandalinci

(2015) that covers 9 EMEs. The time coverage can also be limited with some of them restricted to explore

experiences during the 2000s (Pincheira and Medel (2015), Altug and Çakmakli (2016)).

This strand of the literature on inflation forecasting for EMEs mostly ignores the variant of the random

walk model proposed by Atkeson and Ohanian (2001) (RW-AO, henceforth), and used by Faust and Wright

(2013) among others, as a reference model. Many use the naïve RW without good results instead. The

exceptions being Ögünç et al. (2013) and Altug and Çakmakli (2016), but they are focused on one or two

countries and, in general, they do not find that the RW-AO is successful or the best model. Not surprisingly,

the RW-AO specification does not appear in the lists of forecasting models used by the central banks around

the world– many in EMEs– that use inflation targeting either (see Hammond (2012)).

In turn, our paper develops the following key contributions on a broader sample of EMEs with ample

cross-sectional coverage and an extensive time series encompassing a number of business cycles (going in

most cases back to the 1980s):

1. We study empirically the forecasting performance over a cross-section of EMEs and establish that a

variant of the random walk model along the lines of Atkeson and Ohanian (2001) and Faust and Wright

(2013) (the RW-AO model) outperforms more complex and developed models for inflation forecasting

among a variety of EMEs. If we rank those models beaten by the RW-AO in terms of predictability,

factor-augmented models show up at the top of the list.

2. We argue that the RW-AO model constitutes the empirically-relevant benchmark to beat in forecasting

inflation for EMEs. This is a novel set of results that seems to challenge well-known economic-based

models for inflation forecasting– even Phillips-curve based specifications which otherwise are shown to

perform well for many advanced economies (as seen in Duncan and Martínez-García (2015)).

3. We argue that the role of monetary policy credibility and the formation of expectations can partly

account for the varied experiences of open-economy EMEs. In particular, we suggest that the limited

forecasting success among EMEs of alternative model-based specifications when compared with the

simpler RW-AO model does not invalidate the linkage between domestic inflation and real economic

activity developments world-wide postulated by the open-economy Phillips curve.

Atkeson and Ohanian (2001), among others, have argued that the empirical evidence on the validity of

(closed-economy) Phillips curve-based models is weak for forecasting U.S. inflation. Atkeson and Ohanian

(2001) show that during the Great Moderation period Phillips curve-based models often underperform naïve

models (in particular, the RW-AO model based on past realizations of inflation alone). We recognize the
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potential misspecification of conventional closed-economy Phillips curve-based forecasting models in a world

that has become increasingly more integrated– through trade in goods, capital, labor, information, etc.

We also suggest that even more complex open-economy Phillips curve-based specifications may underper-

form among EMEs due to unmodelled parameter instability, ancillary assumptions that are violated in the

data. Allowing processes for the formation of expectations that are not fully rational and policy frameworks

where the inflation target is not fully credible– as it seems plausible in the case of a number of EMEs in

our dataset– may go a long way to explain and predict inflation. This can accomodate to some extent the

diverse experiences of EMEs and advanced economies without abandoning the idea of an open-economy New

Keynesian Phillips curve altogether.

For our investigation, we focus on headline CPI inflation as our measure of inflation– as it is less subject

to revisions and more timely than, e.g., the GDP deflator– and run a very extensive model comparison

exercise including up to 9 different specifications widely-used in the literature. We collect quarterly data on

headline CPI inflation, real GDP, industrial production, and on several other indicators (bilateral exchange

rates with the U.S. dollar, commodity prices) for 14 EMEs plus 18 advanced economies from the sources

documented in Grossman et al. (2014). We concentrate on the experiences of the 14 EMEs from the

Grossman et al. (2014)’s dataset with consistent, reliable, and longer time series of data.

The main results of our forecast evaluation can be summarized as follows:

1. The RW-AO model generally outperforms the current crop of inflation forecasting models when applied

to EMEs. In general, this model produces mostly a lower root mean square prediction error (RMSPE)

than their competitors. The gains in smaller RMSPEs are statistically significant in a number of

interesting cases, across models and countries.

2. We also consider the performance of the forecasting models with an alternative measure of predictive

success. The RW-AO model produces success ratios– assessing the ability of the forecast to correctly

anticipate the direction of change in inflation– that are comparable or higher than those of their

competitors. For most countries, our findings suggest that those improvements in the accuracy of the

direction of change forecasted for inflation are statistically significant.

3. We view the RW-AO specification as an important empirical benchmark for forecasting inflation across

a diverse group of EMEs around the world. Among the competing models defeated by the RW-AO,

factor-augmented models can be regarded as second-best options under the same metrics of predictive

accuracy.

The rest of the paper proceeds as follows. In section 2, we report the key forecasting models and describe

our pseudo-out-of-sample forecasting strategy. In section 3, we present and discuss the main results and

robustness checks comparing our preferred model specification against a broad range of current models for

inflation forecasting. Section 4 provides a discussion of the main findings of the paper through the lens

of the open-economy New Keynesian model and argues that a variant of this framework that accounts for

deviations from full rationality and imperfect monetary policy credibility can go a long way to explain the

inflation dynamics observed in many EMEs. Section 5 concludes with some final remarks. The appendix

provides all the relevant tables and figures.
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2 Models and Forecast Evaluation

Our sample consists of seasonally-adjusted, average-quarterly series for 14 EMEs (Chile, China, Colom-

bia, Hungary, Indonesia, India, Malaysia, Mexico, Nigeria, Peru, Philippines, South Africa, Thailand, and

Turkey) over the 1980Q1-2016Q4 period. We also include a sample of 18 advanced economies obtained also

from the dataset of Grossman et al. (2014) in order to estimate static factors and use them to forecast

domestic inflation in each EME. We focus on quarter-on-quarter inflation rates (πt) as measured by the

headline Consumer Price Index (CPI). For every country and quarter t in our sample we construct:

πt ≡ 100

[(
CPIt
CPIt−1

)4
− 1

]
.

Table 1 reports the complete list of economies, data sources and the transformations of variables. Further

details of the variables used in each model are included in the next subsection below.

We evaluate a number of models usually suggested by the literature on inflation forecasting in advanced

and developing economies. Aside from univariate specifications and frequentist techniques, we consider other

elements and methods that have proved to be useful in inflation forecasting, such as factor components (Stock

and Watson (2002), Ciccarelli and Mojon (2010)), standard Phillips-curve-type specifications (Stock and

Watson (1999)), Phillips-curve-type open-economy specifications using the real exchange rate (Kabukcuoglu

and Martínez-García (2016)), commodity price indexes (Chen et al. (2014)), Bayesian VARs (Doan et al.

(1984), Litterman (1986)), and time varying coeffi cient models (Primiceri (2005), Mandalinci (2015)).

Random Walk (RW-AO).We consider a variant of the random walk model along the lines of Atkeson

and Ohanian (2001) and Faust and Wright (2013) as our benchmark model:1

M0 : πt+h =
1

4

∑4

i=1
πt+1−i + εt+h

The set of competing models is the following:

1. Recursive autoregression, AR(p) model (RAR).

M1 : πt+h = φ0 + Φ(L)πt + εt+h

where Φ(L) = φ1L+ ...+ φpL
p and we set p = 2 in this lag polynomial.

2. Direct forecast, AR(2) model (DAR).

M2 : πt+h = φ0,h + Φ(L, h)πt + εt+h

where h denotes the forecast horizon, Φ(L, h) = φ1,h + φ2,hL+ ...+ φp,hL
p−1, and we set p = 2 in the

lag polynomial for a given horizon h.

3. Direct forecast, AR(4) model (DAR4).

1These are the forecasting equations we employ (not exactly the models), so we interpret εt+h as a (population) forecast
error.
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M3 : πt+h = φ0,h + Φ(L, h)πt + εt+h

as before but we set p = 4 in the lag polynomial for a given horizon h.

4. Factor-Augmented AR(p) model (FAR).

M4 : πt+h = φ0,h + Φ(L, h)πt + Θ(L, h)F̂t + εt+h

where F̂t denotes an estimated static factor component of the inflation rates of the countries in the full

sample (the static factor is computed using data for the 14 EMEs investigated here plus 18 advanced

economies).

5. Augmented Phillips Curve (APC).

M5 : πt+h = φ0,h + Φ(L, h)πt +A(L, h)yt +B(L, h)et + C(L, h)pct + εt+h

where y, e and pc denote the percent change in the industrial production index, the real exchange rate,

and a commodity price index, respectively.2 The commodity price index is the simple average of the

price indexes of agricultural raw materials, beverages, food, metals and crude oil.

6. Bivariate BVAR (BVAR2). Let Xt = (πt, F̂t)
′, then the VAR model can be written as

M6 : Xt+h = Φ0,h + Φ(L, h)Xt + εt+h

where Φ0,h is a vector of parameters, and Φ(L, h) denotes in this case a matrix of lag polynomials that

depends on h. Following Sims and Zha (1998), the VAR is estimated using Minnesota priors.3

7. Multivariate BVAR (BVAR4). Redefining Xt = (πt, y, e, p
c)′, an analogous version of the

previous VAR model is estimated using Minnesota priors (M7).

8. Bivariate BVAR with commodity price indexes (BVAR2-COM). An analogous version of the
VAR model above is estimated using Minnesota priors and Xt = (πt, p

c)′ (M8).

9. Time Varying Parameter specification (TVP) (M9).

M9 : πt+h = φ0h,t + φ1h,tπt + εt+h

where φ0h,t and φ1h,t are random walk coeffi cients such that

φ0h,t+h = φ0h,t + ν0.t+h

2Following Stock and Watson (1999), we prefer to forecast with a Phillips curve based on measures of real aggregate activity
(e.g., industrial production index) to the use of unemployment rates.

3The hyper-parameters used in all the BVARs were µ1 = 1 (AR(1) coeffi cient dummies), λ1 = 0.5 (overall tightness), λ2 = 1
(relative cross-variable weight), and λ3 = 1 (lag decay).
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φ1h,t+h = φ1h,t + ν1,t+h

and ν0.t+h and ν1.t+h are uncorrelated i.i.d. shocks.

We calculate pseudo out-of-sample forecasts by recursive estimation. The number of lags used in the

baseline exercise for the competing models is 2.4 The exception is the DAR4 model, M4, that has the same

lag structure as the RW-AO for comparison purposes. The forecast horizons are h = 1, 4, 8 and 12 quarters.

The prediction error is defined as the difference between actual and predicted values. The training sample

is 1980Q2-2000Q2. For h = 1, for instance, the first forecast is made in the third quarter of 2000 and the

last one is made in the fourth quarter of 2016.

The root mean squared prediction error (RMSPE) is computed for each country, model, and forecast

horizon. The Theil-U statistic (relative RMSPE), that is, the ratio of RMSPE of our RW-AO relative to

the RMSPE of each competitor (M1 − M9) are reported in Table 2 and Tables 4 − 7. Values less than

one imply that the RW-AO model has a lower RMSPE than does the competitive benchmark. To assess

the statistical significance of the difference of the Theil’s U-statistics from one, we use a simple one-sided

Diebold-Mariano-West test and adjust the statistic if the models are nested according to Clark and West

(2007). In addition, we use the adjustment proposed by Harvey et al. (1997) for small samples. Values of

the corresponding t-statistics larger than 1.282 indicate that the null hypothesis of equal predictive accuracy

is rejected at 10%.

Additionally, we assess the directional accuracy of each competing specification including the benchmark

model. We construct success ratios as estimates of the probability with which the forecast produced by a

given model correctly anticipates the direction of change in inflation at a given forecast horizon. Tossing a

fair coin on a suffi ciently long sample already predicts the direction of change correctly about 50% of the

time, so a model needs to attain a success ratio greater than 0.5 to provide an improvement in directional

accuracy over pure chance. The statistical significance of the directional accuracy relative to pure chance is

determined via the test of Pesaran and Timmermann (2009).

3 Empirical Results

3.1 Main Findings

The ratios of RMSPEs for our set of forecasting models are summarized in Table 2 and detailed in Tables

4 − 7 by country (for each of the forecast horizons 1, 4, 8 and 12, respectively). In Table 4 we have eight

different forecasts because, as it is well known, the iterated and direct methods are equivalent when h = 1.

Similarly, the success ratios to assess the directional accuracy of the forecasts is summarized in Table 3 and

are reported in detail in Tables 8− 11 by country (for each of the forecast horizons considered). Our main

conclusions are as follows:

1. Overall, the RW-AO model mostly produces lower RMSPEs than its competitors at any forecast

horizon (the average median of the relative RMSPE is mostly smaller than one, see Figure 1 and Table

2; more details in Tables 4 − 7). In a number of cases, the gains in smaller RMSPEs are statistically

significant (Table 2). The RW-AO also produces success ratios generally above the 0.5 threshold and,

4The same value is used by Faust and Wright (2013) for the US economy, and Mandalinci (2015) for EMEs.
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very often, statistically significant at all forecasting horizons (see Figure 2 and Table 3; more details

in Tables 8− 11). The likelihood with which the RW-AO correctly anticipates the direction of change

in inflation tends to be comparable or better than that of its competitors, and in the 0.60− 0.67 range

of medians (Table 3). The median success ratio of the RW-AO tends to be very close to or slightly

above the maximum attained by any model for each forecasting horizon (Tables 8− 11).

2. Across countries, the RW-AO always outperforms the rest of the models with statistically significant

gains for Colombia, Mexico, and Peru at every forecast horizon (Table 13). The statistical differences

over the rest of models are notable also for Chile and Nigeria (4-quarter horizon), and Colombia,

Hungary and Turkey (4-, 8-, 12-quarter horizons). In the rest of the sample, the RW-AO’s performance

is relatively reasonable with the exceptions of Malaysia and Thailand (1- and 12-quarter horizons), and

South Africa (1-, 4- and 8-quarter horizons).

3. Considering all the forecast horizons and countries, the RW-AO outperforms– or at least shows similar

predictive ability to– univariate and multivariate factor-augmented models (M4, M6) in forecasting

the inflation rate in the emerging market world. In terms of directional accuracy, the RW-AO seems

to be better or as competitive as such models as well. In Table 13, we sort the alternative models per

the number of countries in which the relative RMSPE of the RW-AO is lower than one but considering

only the statistically significant cases. Factor-augmented models show up at the top of the list. The

models more frequently beaten by the RW-AO are the DAR4 (M3), Augmented Phillips Curve (M5),

the BVAR4 (M7), and the BVAR with commodities (M8; see Table 13). The RW-AO model also

clearly dominates all its competitors in terms of directional accuracy (see average medians over all

horizons in Table 3).

4. The time-varying parameter specification (M9) allows us to partly address the concern that the per-

formance of alternative forecasting models might be influenced by structural change over the sample

period. Our results generally show that the RW-AO specification tends to outperform model M9,

suggesting that parameter instability may not be the only reason explaining the success of the RW-AO

model among EMEs.

3.2 Robustness Checks

We perform a number of robustness checks whose results are available upon request. Some conclusions from

such analysis are nonetheless worth mentioning:

1. Among the Factor Augmented and Augmented Phillips Curve models, we also evaluate some alter-

natives modeling the first difference of the inflation rate without obtaining superior results. The lack

of complete data on monetary aggregates for most of the EMEs prevents us from testing Phillips

Curve specifications with money components. The use of GDP instead of the industrial production

indexes leads to similar statistics for the Augmented Phillips Curve models. Open-economy Phillips

curve-based specifications like the ones proposed in Duncan and Martínez-García (2015) for advanced

economies do not appear to perform all that much better than the RW-AO among EMEs either.

2. We also estimate BVARs using normal-flat priors. Overall, the results are qualitatively similar or

moderately better with Minnesota priors.
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3. The RW-AO model usually outperforms the naïve random-walk specification, with or without drift, in

our sample.

4. In addition, we estimate a RW-AO model with 6 and 8 lags. In general, the results are similar or

slightly favor the specifications with such lag structures.

5. The performance of forecasting models might be influenced by structural changes. The time-varying

parameter specification discussed above (M9) allows us to partly deal with this sort of instabilities.

To verify the sensitivity of our results to the sample chosen, we restimate all the statistics starting in

1990:Q2, leaving aside the 1980s, which is a decade characterized by high and volatile inflation rates

across many EMEs. Even though, the same conclusions hold, we find that the predictive ability of the

competing models is somewhat improved. That is, the RW-AO is still the preferred model but the

alternative models can exploit more useful information to forecast inflation. This suggests the relative

importance of time breaks in the data generating processes.

6. Another possibility to deal with structural breaks is to combine forecasts. Forecast combination reduces

the uncertainty inherent in choosing a specific forecasting model. There exists a number of methods

to construct forecast combinations. Simple forecast averaging has proved to be succesful in terms of

predictive ability compared to other available methods (Clemen (1989), Stock and Watson (2004), and

Clark and McCracken (2010)). In that line, we compute the average forecast over all the competing

models (M1-M9) and another over the factor-augmented models only (M4 andM6, which are also two

of the most successful competing models). The results are shown in Table 14. The average medians

over all the forecast horizons in both cases (0.83 and 0.89) just confirm our previous conclusion about

the forecast ability of the RW-AO model.

4 Discussion

The influential work of Atkeson and Ohanian (2001) documented a break in the (closed-economy) Phillips

curve during the Great Moderation period in the U.S. These authors suggested the RW-AO model as an

alternative theory-agnostic forecasting benchmark and show evidence that it outperforms (closed-economy)

Phillips curve-based forecasting models. The empirical relationship between domestic inflation and domestic

economic activity no longer seemed to work as a tool for inflation forecasting.

Duncan and Martínez-García (2015) argued that while the closed-economy Phillips curve has limited value

for forecasting inflation, it is subject to misspecification. Furthermore, open-economy Phillips curve-based

models can capture domestic inflation dynamics more accurately– a result that is shown to be ubiquitous

across many advanced economies. The Phillips curve appears to be alive and well– albeit in its open-

economy form– or so it seemed. The main contribution of this paper is to show that, in fact, the RW-AO

model appears again to be the relevant benchmark for many EMEs.

But, does the evidence on EMEs presented in this paper weaken the open-economy Phillips curve and its

significance across diverse countries? We argue that the open-economy Phillips curve that emerges from the

workhorse two-country New Keynesian model remains a key structural relationship that helps us understand

the dynamics of inflation and, in principle, the empirical findings on EMEs documented in this paper is not

necessarily inconsistent with such a relationship.
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Our view is that unmodelled parameter instability in the open-economy Phillips curve as well as implicit

assumptions of the New Keynesian model that can be too strict to capture the dynamics of inflation for

EMEs may partly explain why simpler specifications like the RW-AO model outperforms other more complex,

model-based alternatives. The reminder of this section articulates this point highlighting in particular the

significance of the assumptions on full rational expectations and the credibility of the inflation target adopted

by the conventional workhorse open-economy New Keynesian model.

Generalized Open-Economy Phillips Curve. Martínez-García and Wynne (2010) and Duncan and

Martínez-García (2015) show that the structure of the workhorse two-country New Keynesian model can be

described by a log-linearized system of three-equations for each country– an open-economy Phillips curve,

an open-economy investment-savings (IS) curve, and an interest rate-based monetary policy rule. These

log-linear system characterizes the dynamics of output, inflation, and the short-term nominal interest rate

around the steady state for the Home and Foreign economies.

Standard open-economy Phillips curve-based models treat inflation as determined by three factors: ex-

pected inflation, global slack (or more broadly global resource utilization) and structural shocks that ex-

ogenously shift the open-economy Phillips curve. While rational (forward-looking) expectations remain

predominant in the New Keynesian literature (with only limited attention being paid to surveys of inflation

forecasts due to data availability), we argue that the importance of the mechanism for the formation of ex-

pectations should not be underestimated. Well-anchored inflation expectations are thought to be a reflection

of credible monetary policy. In that sense, we consider the role of imperfect credibility on the inflation target

into an otherwise standard open-economy Phillips curve.

We allow for deviations from rational expectations as well– using the conventional form of adaptive expec-

tations for illustrative purposes. We can then show that deviations from fully rational expectations together

with imperfect credibility of the monetary policy indeed play an important role in bringing the implications

of the open-economy New Keynesian model closer to the empirical findings found among EMEs– which,

in turn, provides us with the key elements to model the diverse experience of inflation dynamics observed

around the world without surrendering core features of the open-economy New Keynesian model.

Under purely rational expectations, the equilibrium of the model implies that inflation expectations

must equate an inflation target (which can be a constant) set by the central bank whenever this target is

perfectly credible– and this, in turn, anchors inflation expectations in the open-economy Phillips curve.5

In equilibrium, the long-run trend inflation rate prevailing in a country, πt, must be equal to the country’s

inflation target set by their own central bank, i.e. must be equal to π̂Tt . To see this, we can simply interpret

the long-run trend inflation rate as the (stochastic) trend of the corresponding inflation process, i.e.,

πt = lim
h→∞

Et (π̂t+h) . (1)

The inflation rate of each country, π̂t ≡ p̂t− p̂t−1, fluctuates around the country’s stochastic inflation target,
π̂Tt , whenever credibly set by the central bank. Since generally the literature assumes that the inflation

5The inflation target is explicitly announced under an inflation-targeting regime, which is the prevailing framework for
monetary policy among many of the EMEs in our sample (Hammond (2012)). However, a target for inflation can also be
communicated (implicitly or explicitly) to the public even without the trappings of inflation-targeting as it happens for some of
the EMEs in our sample. The central question that we postulate in this section is that the inflation target– whether a feature
of an inflation-targeting regime or not– is credible and how it pins down inflation by helping anchor inflation expectations.
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target must be a constant (or perhaps a random walk), it follows that Et
(
π̂Tt+h

)
= π̂Tt at any period h > 0

and as h goes to infinity. In that sense, (1) implies that πt = π̂Tt – hence validating the initial conjecture

that trend and target inflation must be the same in equilibrium (Woodford (2008)).

Hence, a straightforward forecasting model based on full rationality and perfect credibility suffi ces to

effi ciently predict inflation among most advanced economies– as shown in the work of Duncan and Martínez-

García (2015), among others. A different story arises from the empirical evidence gathered in this paper

among EMEs. A departure that introduces adaptive expectations together with partial credibility (or imper-

fect credibility) of the central bank’s inflation target, however, can be both consistent with the open-economy

Phillips curve and with the evidence suggesting that near-random walk models can be better suited to forecast

inflation among many open EMEs.

The open-economy Phillips curve in Martínez-García and Wynne (2010) under perfect international

risk-sharing:6

π̂t ≈ βEt (π̂t+1) + κx̂Wt + εt, (2)

x̂Wt ≡ (1− ξ) x̂t + ξx̂∗t , (3)

where x̂t = ŷt− ŷt and x̂∗t = ŷ∗t − ŷ
∗
t define the Home and Foreign output gaps (slack)– that is, the deviations

of output, ŷt and ŷ∗t respectively, from output potential under flexible prices and perfect competition, ŷt and

ŷ
∗
t respectively– and x̂

W
t is the corresponding trade-weighted measure of global slack. Here trade weights

are determined by the share of imported goods in the consumption basket 0 ≤ ξ ≤ 1
2 .
7

The intertemporal discount factor is 0 < β < 1, while the composite coeffi cient κ ≡
(
(1−α)(1−βα)

α

)
(ϕ+ γ)

is the slope of the open-economy Phillips curve which depends also on the Calvo price stickiness parameter

0 < α < 1, the inverse of the Frisch elasticity of labor supply ϕ > 0, and the intertemporal elasticity of

substitution, γ > 0. The term εt captures shocks to the open-economy Phillips curve and other transient

factors.

Suppose that inflationary expectations are based on a weighted average of past inflation and on the

central bank’s inflation target (assumed to be constant, i.e., π̂Tt = π̂T ). Then, the open-economy Phillips

curve can be re-written as follows:

π̂t ≈ β
(
(1− θ) π̂t−1 + θπ̂T

)
+ κx̂Wt + εt, (4)

where θ is the corresponding weight on the inflation target and (1− θ) the weight on past inflation. The
parameter 0 ≤ θ ≤ 1 can be interpreted as a measure of the credibility of the central bank’s inflation target

with θ = 1 indicting full credibility of the target, θ = 0 representing the case of no credibility, and 0 < θ < 1

indicating partial credibility.8 More generally, using the fact that the average q−period inflation rate from
6The elasticity of intratemporal substitution between Home and Foreign goods is σ > 0 and the intertemporal elasticity of

substitution is γ > 0. In the special case where σγ = 1, perfect risk-sharing can be attained through fluctuations in international
relative prices (terms of trade) only irrespective of the international asset market structure (e.g., Cole and Obstfeld (1991)). In
that scenario in particular, we find that Θ ≡ (1− ξ) and this leads us to adopt a much simpler trade-weighted specification of
global slack in the open-economy Phillips curve.

7This specification can also be recast in terms of domestic slack (x̂t) and the real exchange rate gap, as explained in Martínez-
García and Wynne (2010). That transformation is used for inflation forecasting by Kabukcuoglu and Martínez-García (2016),
among others, and also motivates the APC (M5) and BVAR4 (M7) specifications of our empirical work.

8We use this special case with constant θ for illustration purposes. For details on generalizing the specifcation to allow for
state-dependent changes in the perceptions of how credible monetary policy is and their linkage to inflation expectations, we
refer the interested reader to Mehrotra and Yetman (2014).
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t+ 1− q to t can be written as π̂qt ≈ 1
q

∑q

j=1
π̂t+1−j , then we can write the open-economy Phillips curve as

π̂t ≈ β
(
(1− θ) π̂qt−1 + θπ̂T

)
+ κx̂Wt + εt, (5)

for some q ≥ 1. This is consistent with π̂qt−1 being the level of inflation observed at the time when the

forecast is made, but permits us to consider a number of common specifications. One possibility is that the

forecasts of one-period-ahead inflation at time t is given by the observed inflation rate π̂t−1 (which is the case

when q = 1). The timing of the inflation rate corrects for the publication lags in the inflation data. Another

conventional possibility is that adaptive expectations be based on π̂4t instead, which is approximately equal

to the observed rate of inflation over the previous four periods. This measure alone captures well the inflation

tendency and constitutes, in fact, the basis of our RW-AO model (M0).

Basic Insights from the Generalized Open-Economy Phillips Curve. Assume now that inflationary

expectations are purely backward-looking (adaptive), so that θ = 0 and economic agents put no weight on

the offi cial inflation target. Hence, it follows from here that:

π̂t ≈ βπ̂qt−1 + κx̂Wt + εt → ∆qπ̂t ≈ (β − 1) π̂qt−1 + κx̂Wt + εt, (6)

which appears to behave like a near-unit-root autoregressive process augmented with a residual term that

is partly endogenous (owing to global slack). Here, we define the inflation deviations operator as follows:

∆qπ̂t ≡ π̂t − π̂qt−1, which corresponds to a conventional first-difference operator whenever q = 1. If β → 1,

a structural shock that produces a positive global output gap will not simply lead to higher inflation, it will

lead to steadily increasing inflation. The only way to stabilize inflation in that case would be to push output

back to potential. However, in order to lower above-target inflation back to target, the central bank will need

to push output below potential (possibly causing a recession in the process). Global slack, therefore, can lead

to inflationary and deflationary spirals in this context and policy must respond accordingly. In addition, we

must recognize that those patterns may emerge even when the local economy is operating below potential

because– owing to above-potential output in the rest of the world– it finds itself drawn to this in a world

economy that is deeply interconnected.

Suppose instead that inflationary expectations are firmly anchored and fully rational as assumed for the

advanced economies. Then, theory suggests that inflationary expectations are pinned down by the central

bank’s target and θ = 1. From here it follows that:

π̂t ≈ βπ̂T + κx̂Wt + εt → ∆qπ̂t ≈ κ∆qx̂Wt + ∆qεt. (7)

Now, the implication of the model is rather different. A shock that produces a positive global output gap

will increase inflation above the central bank’s target, but will not unleash an inflationary spiral as before. If

the global output gap stabilizes– even when it is still positive and quite sizable– inflation will also stabilize.

Hence, a shock that pushes output above its potential, will have only a limited impact in rising inflation.

In other words, a credible inflation target is a powerful anchor for actual inflation– something that appears

to be corroborated in the evidence for most advanced countries presented in Duncan and Martínez-García

(2015).
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Using these two polar cases, we see that the deviations in inflation given by ∆qπ̂t are partly explained

by the level of global slack x̂Wt whenever economic agents put no weight on the offi cial target (if also

β → 1), but respond to the conforming deviations in global slack given by ∆qx̂Wt whenever the inflation

target is fully credible. Not surprisingly, if the true data-generating process (DGP) is given by the former

specification where agents do not believe in the inflation target (and expectations are adaptive), trying to

predict inflation based on the alternative spefication which assumes full credibility and rational expectations

is likely to underperform relative to a simpler empirical model that abstracts from slack altogether. That

nested, simpler model which uses π̂qt−1 solely as a predictor corresponds to the empirical RW-AO specification

whenever q = 4. Hence, we would argue that model misspecification in terms of monetary policy credibility

and full rational expectations formation rather than the underlying open-economy Phillips curve may explain

why simpler models like the RW-AO (M0) appear to work well empirically among many emerging economies.

Finally, consider the intermediate case in which inflationary expectations are not well-anchored and

inflation dynamics depend on both the central bank’s inflation target and past inflation. In this case, we

have 0 < θ < 1 and that implies:

π̂t ≈ β
(
(1− θ) π̂qt−1 + θπ̂T

)
+ κx̂Wt + εt → ∆qπ̂t ≈ βθ

(
π̂T − π̂qt−1

)
+ κx̂Wt + εt. (8)

Hence, inflation tends to converge towards the central bank’s inflation target within a specification that can

be cast in the form of an error correction-type model for changes in inflation and global slack. The inflation

process also tends to increase/decrease in the direction of global slack. As a result, inflation stabilizes in the

short-run whenever those forces offset each other, i.e. when:

∆qπ̂t = 0→ π̂t = π̂qt−1 = π̂T +
κ

βθ
x̂Wt +

1

βθ
εt. (9)

Even partial credibility suffi ces to avoid the inflationary/deflationary spirals of the case where monetary

policy is not credible– i.e., when θ = 0.

However, a comparison with the case where inflation expectations are well-anchored is very useful as

it reveals that inflation quickly becomes unanchored whenever θ 6= 1 (and θ → 0) implying much larger

differences between actual and target inflation for a corresponding amount of global slack than under full

credibility even when policy still manages to achieve inflation stabilization. A number of recent studies have

argued, in fact, that the improved credibility of the central bank’s inflation target helps explain the failure of

inflation to keep falling despite the apparent persistence of large negative output gaps in the aftermath of the

2008-09 global recession among many advanced countries (Meier (2010), IMF WEO (2013)). In turn, much

less work has been done for EMEs and our paper is– to the best of our knowledge– the first to explicitly

propose that the credibility of the inflation target and deviations from rational expectations could help us

align the predictions of the open-economy Phillips curve specification with the findings reported here for

many EMEs. However, we could even estimate the credibility parameter θ associated with the inflation

target in (8). We leave for future research the estimation of the model with imperfect credibility of the

inflation target and the recovery of the parameter θ associated with the credibility of the policy.

We argue that deviations from full rationality are also significant factors to take under consideration.

Hence, we also plan to incorporate explicitly– if available– surveys or data on the inflation target for the

central bank in the estimation and forecasting. We believe, nonetheless, that our paper makes a truly novel
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contribution to the literature by taking some first steps empirically (and to some extent theoretically as

well) to develop variants of the open-economy Phillips-curve based model of inflation determination and

forecasting that can encompass experiences as different as those of the EME and advanced economies that

we have investigated in this work and in our previous paper (Duncan and Martínez-García (2015)). We

believe this could ultimately equip us with a more unified framework with which to explore inflation across

many countries around the world.

5 Concluding Remarks

Our empirical findings, based on a varied cross-section of country experiences among EMEs, show that a

parsimonious forecasting model of inflation (such as the RW-AO) outperforms other forecasting models of

inflation and is potentially not inconsistent with inflation dynamics under an open-economy Phillips curve

specification coupled with lack of credibility in the inflation target and adaptive expectations. As discussed

in the previous section, under lack of credibility in the inflation target, such a simple open-economy Phillips

curve can imply inflation dynamics that resembles non-stationary processes as those observed in many EMEs

during the eighties and part of the ninenties. That tends to produce a behavior in the inflation rate that can

possibly display permanent (or near-permanent) effects from otherwise transitory changes in either domestic

or– most notably– rest of the world slack. On the other hand, the gradual recovery of the confidence on

the central bank’s policies and its commitment with an inflation target lead to stationary processes that

probably are more similar to those seen to work better for EMEs from the late nineties on. In that case,

output gap shocks will only affect inflation temporarily. The inability of the forecaster to observe sudden

shifts in credibility or frequent changes in the implicit target make the empirical modelling and forecasting

of inflation a diffi cult task, particularly in the developing world.

The same standard multi-country, open-economy New Keynesian model that provides a rationale for

forecasting models of inflation that are succesful among advanced economies, also suggests a set of assump-

tions that can underpin the behavior of inflation prediction for EMEs as well. Therefore, our results suggest

that a more flexible– and general– approach based on the open-economy Phillips curve is possible and can

plausibly be consistent with the evidence on inflation across many country experiences around the world.

But our paper also points at the importance of understanding the process that leads to the formation

of expectations and the appropriate conduct of monetary policy under different credibility scenarios. Our

results might also suggest that incorporating inflation expectations explicitly into our forecasting models is

a promising avenue for future research which– although complicated due to data availability– we plan to

explore further in future research.
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Appendix

A Tables and Figures

Table 1 - Data Sources for the Different Forecasting Models

Concept Data sources Transformation

Headline CPI National statistical offi ces and central banks; OECD; Quarter-over-quarter (%)

Grossman et al. (2014)

GDP National statistical offi ces and central banks; OECD; Quarter-over-quarter (%)

Grossman et al. (2014)

Industrial production National statistical offi ces and central banks; Quarter-over-quarter (%)

OECD; IMF; Grossman et al. (2014)

Nominal Exchange Rate Central banks; Wall Street Journal; Financial Times; IMF; Quarter-over-quarter (%)

Grossman et al. (2014)

Commodity price index IMF Quarter-over-quarter (%)

This table reports the basic information about the data used in the forecasting exercise. The countries included in our forecasting
exercises are: Chile, China, Colombia, Hungary, Indonesia, India, Malaysia, Mexico, Nigeria, Peru, Phillippines, South Africa,
Thailand, and Turkey. The time series coverage spans the period between the first quarter of 1980 and the fourth quarter of 2016
across all variables and countries, with few exceptions. We use Peru’s Central Bank headline CPI data for its longer coverage. For
Nigeria, we use GDP data only because the industrial production series was not available for the whole period. China’s headline
CPI data starts in 1983:Q4.

The commodity price index is computed as a simple average of the price indexes of agricultural raw materials, food, beverages,
metals and crude oil from the IMF. The real exchange rate used in augmented Phillips curve models is defined as the nominal
exchange rates times the U.S. CPI divided by the CPI of the EME.

All series are seasonally adjusted.
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Figure 1. RMSPE of the RW-AO Relative to Competing Models (Medians)
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Figure 2. Directional Accuracy: Success Ratios (Medians)
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M1 M2 M3 M4 M5 M6 M7 M8 M9 Average
RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP M1-M9

One-quarter ahead
Mean 0.904 0.904 0.898 0.913 0.799 0.927 0.813 0.854 1.051 0.896
Median 1.005 1.005 0.967 1.001 0.851 1.027 0.848 0.920 1.030 0.962
#<1 7 7 8 7 11 6 9 9 5 8
#pv<.1 4 4 8 4 6 4 7 6 2 5
Four-quarter ahead
Mean 0.706 0.722 0.764 0.745 0.659 0.799 0.724 0.732 0.832 0.743
Median 0.810 0.763 0.858 0.818 0.610 0.870 0.775 0.793 0.824 0.791
#<1 12 12 11 10 13 12 13 14 14 12
#pv<.1 9 9 11 9 9 8 10 9 10 9
Eight-quarter ahead
Mean 0.637 0.696 0.714 0.763 0.653 0.785 0.771 0.773 0.840 0.737
Median 0.720 0.711 0.761 0.870 0.728 0.871 0.839 0.858 0.813 0.797
#<1 12 11 11 10 13 13 12 13 14 12
#pv<.1 9 10 11 8 10 9 11 10 11 10
Twelve-quarter ahead
Mean 0.617 0.667 0.679 0.772 0.618 0.764 0.785 0.814 0.870 0.732
Median 0.608 0.636 0.664 0.830 0.586 0.859 0.874 0.876 0.860 0.755
#<1 12 11 11 10 12 14 14 14 14 12
#pv<.1 10 10 11 8 10 8 7 6 8 9
Averages (all horizons)
Mean 0.716 0.747 0.764 0.798 0.682 0.819 0.773 0.793 0.898 0.777
Median 0.786 0.779 0.812 0.880 0.694 0.907 0.834 0.862 0.882 0.826
#<1 11 10 10 9 12 11 12 13 12 11
#pv<.1 8 8 10 7 9 7 9 8 8 8
Notes: Rows for means and medians report the average/median ratio of root mean squared prediction error (RMSPE) from the RW-AO model relative to the RMSPE of standard forecasting models calculated over the 14 countries. Values less 
than one imply that the RW-AO model has a lower RMSPE than does the competitive benchmark. More detailed information by country can be found in Tables 4-7.

Table 2 - RMSPE of the RW-AO Model Relative to Competing Models (Summary)



M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 Average
RW-AO RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP M1-M9

One-quarter ahead
Mean 0.615 0.549 0.549 0.563 0.575 0.530 0.573 0.540 0.541 0.519 0.549
Median 0.598 0.561 0.561 0.561 0.576 0.545 0.583 0.561 0.568 0.515 0.559
#<0.5 14 9 9 10 12 9 11 9 9 8 10
Four-quarter ahead
Mean 0.663 0.582 0.590 0.602 0.592 0.587 0.602 0.595 0.593 0.514 0.584
Median 0.659 0.571 0.571 0.579 0.603 0.571 0.619 0.579 0.587 0.516 0.578
#<0.5 14 13 13 14 12 13 12 13 13 8 12
Eight-quarter ahead
Mean 0.663 0.534 0.556 0.567 0.599 0.541 0.611 0.559 0.579 0.534 0.564
Median 0.669 0.534 0.551 0.559 0.619 0.551 0.627 0.585 0.644 0.525 0.577
#<0.5 14 10 9 10 9 8 12 9 8 9 9
Twelve-quarter ahead
Mean 0.665 0.540 0.556 0.561 0.591 0.564 0.544 0.570 0.581 0.522 0.559
Median 0.664 0.545 0.573 0.564 0.636 0.573 0.555 0.582 0.600 0.509 0.571
#<0.5 14 10 10 10 10 10 12 12 12 9 11
Averages (all horizons)
Mean 0.652 0.551 0.562 0.573 0.589 0.555 0.583 0.566 0.573 0.522 0.564
Median 0.648 0.553 0.564 0.566 0.608 0.560 0.596 0.577 0.600 0.516 0.571
#<0.5 14 11 10 11 11 10 12 11 11 9 10

Table 3 - Directional Accuracy: Success Ratios (Summary)

Notes: Rows for means and medians report the average and median ratio of success in directional accuracy over the 14 countries. More detailed information by country can be found in Tables 8-11.



M1 M1/M2 M3 M4 M5 M6 M7 M8 M9
RAR or DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 1.033 0.966 * 1.000 0.782 * 1.037 0.838 * 0.930 1.240
China 1.183 1.175 1.198 1.117 1.195 1.172 1.151 1.154
Colombia 0.814 * 0.969 * 0.690 * 0.659 * 0.715 * 0.698 * 0.779 * 1.165
Hungary 0.928 1.007 0.930 0.784 * 0.941 0.720 * 0.796 * 1.007
Indonesia 0.978 0.966 * 1.043 0.967 1.039 1.007 1.006 0.918 *
India 0.938 0.911 * 0.873 0.969 0.891 0.995 0.911 0.900
Malaysia 1.104 1.106 1.095 1.123 1.101 1.113 1.121 0.948
Mexico 0.374 * 0.320 * 0.626 * 0.364 * 0.633 * 0.367 * 0.371 * 0.817 *
Nigeria 1.055 1.039 1.003 0.673 * 1.018 0.706 * 0.873 * 0.985
Peru 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 1.047
Philippines 1.147 0.926 * 1.246 0.918 1.271 0.858 * 0.950 1.242
South Africa 1.037 1.074 1.126 0.940 1.154 1.097 1.020 1.191
Thailand 1.194 1.196 1.174 1.157 1.192 1.108 1.190 1.091
Turkey 0.875 * 0.912 * 0.782 * 0.728 0.788 * 0.696 0.853 * 1.014

Mean #DIV/0! 0.904 0.898 0.913 0.799 0.927 0.813 0.854 1.051
Median #NUM! 1.005 0.967 1.001 0.851 1.027 0.848 0.920 1.030
#<1 0 7 8 7 11 6 9 9 5
#pv<.1 4 8 4 6 4 7 6 2
Notes: Data are described in Table 1. Columns report the ratio of root mean squared prediction error (RMSPE) from the RW-AO model relative to the RMSPE of standard forecasting models (see section 2). Values 
less than one imply that the RW-AO model has a lower RMSPE than does the competitive benchmark. Values in bold indicate that the null hypothesis of equal predictive accuracy is rejected at 10% level using the 
Diebold-Mariano-West statistic or the adjusted Clark-West statistic when models are nested. 

Table 4 - One-Quarter Ahead RMSPE of the RW-AO Model Relative to Competing Models



M1 M2 M3 M4 M5 M6 M7 M8 M9
RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 0.725 * 0.691 * 0.843 * 0.730 * 0.611 * 0.967 0.803 * 0.817 * 0.932
China 0.960 0.912 0.931 * 1.019 0.975 1.040 0.980 0.949 0.927
Colombia 0.473 * 0.663 * 0.872 * 0.565 * 0.519 * 0.766 * 0.735 * 0.750 * 0.907
Hungary 0.592 * 0.751 * 0.790 * 0.784 * 0.583 * 0.827 * 0.718 * 0.724 * 0.868 *
Indonesia 0.833 * 0.847 * 0.876 * 0.857 0.766 * 0.894 * 0.868 * 0.871 * 0.787 *
India 1.046 0.987 0.972 * 0.650 * 0.902 0.822 * 0.875 * 0.934 0.815 *
Malaysia 1.094 1.112 1.122 1.081 1.074 0.947 0.971 0.984 0.750 *
Mexico 0.136 * 0.119 * 0.118 * 0.264 * 0.111 * 0.411 * 0.150 * 0.159 * 0.834 *
Nigeria 0.810 * 0.775 * 0.750 * 0.852 * 0.597 * 0.846 * 0.747 * 0.768 * 0.762 *
Peru 0.001 * 0.001 * 0.001 * 0.000 * 0.000 * 0.001 * 0.000 * 0.000 * 0.898 *
Philippines 0.811 * 0.636 * 0.592 * 0.945 0.577 * 0.991 0.699 * 0.691 * 0.809 *
South Africa 0.898 0.993 1.059 1.101 0.957 1.042 1.000 0.994 0.884 *
Thailand 0.996 1.018 1.058 1.023 0.941 0.925 0.849 * 0.935 0.732 *
Turkey 0.515 * 0.608 * 0.716 * 0.556 * 0.610 * 0.700 * 0.742 0.675 * 0.742

Mean 0.706 0.722 0.764 0.745 0.659 0.799 0.724 0.732 0.832
Median 0.810 0.763 0.858 0.818 0.610 0.870 0.775 0.793 0.824
#<1 12 12 11 10 13 12 13 14 14
#pv<.1 9 9 11 9 9 8 10 9 10
Notes: Data are described in Table 1. Columns report the ratio of root mean squared prediction error (RMSPE) from the RW-AO model relative to the RMSPE of standard forecasting models (see section 2). Values 
less than one imply that the RW-AO model has a lower RMSPE than does the competitive benchmark. Values in bold indicate that the null hypothesis of equal predictive accuracy is rejected at 10% level using the 
Diebold-Mariano-West statistic or the adjusted Clark-West statistic when models are nested. 

Table 5 - Four-Quarter Ahead RMSPE of the RW-AO Model Relative to Competing Models



M1 M2 M3 M4 M5 M6 M7 M8 M9
RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 0.538 * 0.891 0.965 * 0.917 0.730 * 0.915 0.874 * 0.863 * 0.813 *
China 0.833 0.731 * 0.674 * 0.960 0.905 0.938 0.895 * 0.986 0.834 *
Colombia 0.375 * 0.690 * 0.851 * 0.668 * 0.557 * 0.903 * 0.969 0.958 0.928 *
Hungary 0.467 * 0.589 * 0.639 * 0.634 * 0.463 * 0.745 * 0.706 * 0.702 * 0.766 *
Indonesia 0.839 0.837 * 0.842 * 0.841 * 0.837 * 0.847 * 0.850 * 0.853 * 0.813 *
India 0.916 0.888 0.896 * 0.655 * 0.726 * 0.821 * 0.794 * 0.822 * 0.751 *
Malaysia 1.044 1.059 1.070 1.033 1.021 0.804 * 0.827 * 0.832 0.738 *
Mexico 0.088 * 0.083 * 0.099 * 0.164 * 0.084 * 0.368 * 0.285 * 0.248 * 0.919
Nigeria 0.769 * 0.655 * 0.679 * 0.898 0.585 * 0.884 * 0.880 * 0.898 0.811 *
Peru 0.001 * 0.000 * 0.000 * 0.000 * 0.000 * 0.001 * 0.000 * 0.000 * 0.869 *
Philippines 0.671 * 0.530 * 0.532 * 1.051 0.492 * 0.901 0.818 * 0.813 * 0.780 *
South Africa 0.843 1.075 1.067 1.209 0.992 1.018 1.032 1.036 0.958
Thailand 1.033 1.051 1.008 1.025 0.937 0.858 * 0.829 * 0.903 0.792 *
Turkey 0.499 * 0.657 * 0.679 * 0.631 * 0.818 * 0.983 1.032 0.903 0.985

Mean 0.637 0.696 0.714 0.763 0.653 0.785 0.771 0.773 0.840
Median 0.720 0.711 0.761 0.870 0.728 0.871 0.839 0.858 0.813
#<1 12 11 11 10 13 13 12 13 14
#pv<.1 9 10 11 8 10 9 11 10 11
Notes: Data are described in Table 1. Columns report the ratio of root mean squared prediction error (RMSPE) from the RW-AO model relative to the RMSPE of standard forecasting models (see section 2). Values 
less than one imply that the RW-AO model has a lower RMSPE than does the competitive benchmark. Values in bold indicate that the null hypothesis of equal predictive accuracy is rejected at 10% level using the 
Diebold-Mariano-West statistic or the adjusted Clark-West statistic when models are nested. 

Table 6 - Eight-Quarter Ahead RMSPE of the RW-AO Model Relative to Competing Models



M1 M2 M3 M4 M5 M6 M7 M8 M9
RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 0.482 * 0.644 * 0.734 * 0.960 0.593 * 0.956 0.949 0.970 0.933
China 0.609 * 0.494 * 0.436 * 0.567 * 0.579 * 0.725 * 0.588 * 0.865 0.807 *
Colombia 0.302 * 0.610 * 0.630 * 0.619 * 0.539 * 0.830 0.892 0.921 0.933
Hungary 0.430 * 0.488 * 0.497 * 0.460 * 0.417 * 0.837 * 0.823 * 0.816 * 0.916
Indonesia 0.865 0.896 * 0.871 * 0.921 * 0.899 0.834 * 0.845 * 0.843 * 0.844 *
India 0.961 0.955 0.967 * 0.841 0.833 * 0.850 0.836 0.868 0.845
Malaysia 1.094 1.106 1.075 1.101 1.100 0.868 0.883 0.884 0.835
Mexico 0.081 * 0.111 * 0.135 * 0.190 * 0.119 * 0.233 * 0.625 * 0.654 * 0.870 *
Nigeria 0.757 * 0.654 * 0.617 * 0.820 0.618 * 0.867 * 0.904 0.927 0.850 *
Peru 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.001 * 0.001 * 0.002 * 0.794 *
Philippines 0.607 * 0.580 * 0.643 * 1.025 0.500 * 0.876 * 0.865 * 0.832 * 0.784 *
South Africa 0.795 1.005 1.063 1.328 0.927 0.953 0.954 0.950 0.886
Thailand 1.168 1.161 1.151 1.197 1.003 0.945 0.913 0.984 0.910
Turkey 0.489 * 0.628 * 0.685 * 0.780 * 0.523 * 0.924 0.918 0.885 0.968

Mean 0.617 0.667 0.679 0.772 0.618 0.764 0.785 0.814 0.870
Median 0.608 0.636 0.664 0.830 0.586 0.859 0.874 0.876 0.860
#<1 12 11 11 10 12 14 14 14 14
#pv<.1 10 10 11 8 10 8 7 6 8
Notes: Data are described in Table 1. Columns report the ratio of root mean squared prediction error (RMSPE) from the RW-AO model relative to the RMSPE of standard forecasting models (see section 2). Values less than 
one imply that the RW-AO model has a lower RMSPE than does the competitive benchmark. Values in bold indicate that the null hypothesis of equal predictive accuracy is rejected at 10% level using the Diebold-Mariano-
West statistic or the adjusted Clark-West statistic when models are nested. 

Table 7- Twelve-Quarter Ahead RMSPE of the RW-AO Model Relative to Competing Models



M0 M1/M2 M3 M4 M5 M6 M7 M8 M9
RW-AO RAR or DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 0.61 * 0.52 † 0.52 † 0.58 0.48 † 0.58 0.56 0.56 * 0.50
China 0.59 * 0.64 † 0.65 † 0.70 * 0.55 0.71 * 0.61 * 0.59 0.55 *
Colombia 0.59 * 0.56 † 0.64 * 0.53 0.59 * 0.52 0.53 0.58 0.55 *
Hungary 0.56 * 0.44 † 0.47 0.39 0.41 † 0.41 0.42 0.38 0.62
Indonesia 0.74 * 0.58 * 0.64 * 0.65 * 0.58 * 0.65 * 0.62 * 0.61 * 0.39
India 0.58 * 0.56 * 0.58 * 0.56 * 0.62 * 0.56 * 0.62 * 0.58 * 0.48
Malaysia 0.62 * 0.65 * 0.67 * 0.64 * 0.62 * 0.64 * 0.56 0.68 * 0.53 *
Mexico 0.70 * 0.47 † 0.47 † 0.56 * 0.53 0.56 * 0.48 0.47 † 0.58 *
Nigeria 0.68 * 0.61 * 0.61 * 0.59 * 0.57 0.59 * 0.57 0.55 0.50
Peru 0.62 * 0.45 † 0.45 † 0.45 0.47 0.44 0.41 0.45 † 0.45
Philippines 0.55 0.56 * 0.53 † 0.64 * 0.55 0.62 * 0.59 * 0.58 0.52
South Africa 0.55 0.50 * 0.55 * 0.58 * 0.39 0.59 * 0.42 0.41 0.50
Thailand 0.64 * 0.65 * 0.62 * 0.67 * 0.67 * 0.65 * 0.65 * 0.65 * 0.52
Turkey 0.59 * 0.50 † 0.50 † 0.52 * 0.39 0.50 † 0.50 0.50 † 0.59 *

Mean 0.61 0.55 0.56 0.57 0.53 0.57 0.54 0.54 0.52
Median 0.60 0.56 0.56 0.58 0.55 0.58 0.56 0.57 0.52
#>0.5 14 9 10 12 9 11 9 9 8

Notes: Data are described in Table 1. Columns report the ratio of success in directional accuracy. Values in bold (*) indicate that the null hypothesis of no dependence between sign(forecast change) and sign(actual change) is 
rejected at 10% level using the Pesaran and Timmermann (2009) test. A "†" symbol at the right of each value indicates that the test statistic is undefined due to the presence of many forecasts in one direction.

Table 8 - Directional Accuracy: Success Ratio of One-Quarter-Ahead Forecasts



M0 M1 M2 M3 M4 M5 M6 M7 M8 M9
RW-AO RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 0.59 * 0.57 † 0.56 † 0.59 0.51 0.57 † 0.63 * 0.54 † 0.59 † 0.48
China 0.57 * 0.62 † 0.62 † 0.65 † 0.67 * 0.60 0.71 * 0.54 0.62 † 0.57 *
Colombia 0.59 * 0.54 † 0.57 * 0.54 0.52 0.54 0.51 0.52 0.56 † 0.49
Hungary 0.63 * 0.41 † 0.49 † 0.56 * 0.48 0.44 † 0.48 * 0.44 † 0.40 † 0.56
Indonesia 0.76 * 0.60 * 0.63 * 0.67 * 0.67 * 0.60 * 0.70 * 0.67 * 0.67 * 0.52
India 0.60 * 0.62 * 0.62 * 0.60 * 0.52 † 0.59 * 0.51 * 0.57 * 0.60 * 0.56
Malaysia 0.71 * 0.79 * 0.79 * 0.76 * 0.76 * 0.81 * 0.78 * 0.79 * 0.79 * 0.52
Mexico 0.71 * 0.51 † 0.51 † 0.51 † 0.57 * 0.52 † 0.56 0.52 † 0.54 † 0.48
Nigeria 0.70 * 0.57 * 0.57 * 0.57 * 0.63 * 0.57 * 0.60 * 0.59 * 0.59 * 0.49
Peru 0.63 * 0.51 † 0.51 † 0.51 † 0.33 0.51 0.37 0.54 0.56 0.52
Philippines 0.68 * 0.57 † 0.54 † 0.54 † 0.71 * 0.57 * 0.70 * 0.60 * 0.52 † 0.51
South Africa 0.62 * 0.67 * 0.67 * 0.71 * 0.70 * 0.68 * 0.70 * 0.68 * 0.70 * 0.48
Thailand 0.71 * 0.63 * 0.65 * 0.70 * 0.67 * 0.65 * 0.67 * 0.65 * 0.67 * 0.54
Turkey 0.76 * 0.52 † 0.52 † 0.52 † 0.54 † 0.56 * 0.52 † 0.67 * 0.51 † 0.48

Mean 0.66 0.58 0.59 0.60 0.59 0.59 0.60 0.60 0.59 0.51
Median 0.66 0.57 0.57 0.58 0.60 0.57 0.62 0.58 0.59 0.52
#>0.5 14 13 13 14 12 13 12 13 13 8

Table 9 - Directional Accuracy: Success Ratio of Four-Quarter-Ahead Forecasts

Notes: Data are described in Table 1. Columns report the ratio of success in directional accuracy. Values in bold (*) indicate that the null hypothesis of no dependence between sign(forecast change) and sign(actual change) is 
rejected at 10% level using the Pesaran and Timmermann (2009) test. A "†" symbol at the right of each value indicates that the test statistic is undefined due to the presence of many forecasts in one direction.



M0 M1 M2 M3 M4 M5 M6 M7 M8 M9
RW-AO RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 0.63 * 0.54 † 0.69 * 0.69 * 0.61 * 0.58 * 0.71 * 0.63 * 0.66 † 0.53
China 0.71 * 0.56 † 0.58 † 0.58 † 0.69 * 0.63 * 0.76 * 0.63 * 0.69 * 0.61 *
Colombia 0.58 * 0.47 † 0.47 0.54 0.34 0.42 0.53 † 0.47 0.66 * 0.56
Hungary 0.64 * 0.37 † 0.41 † 0.47 * 0.47 0.39 † 0.44 * 0.41 † 0.37 † 0.59
Indonesia 0.69 * 0.58 * 0.66 * 0.66 * 0.68 * 0.59 * 0.66 * 0.69 * 0.69 * 0.42
India 0.73 * 0.53 * 0.53 * 0.54 * 0.44 * 0.46 * 0.53 * 0.39 0.46 * 0.63
Malaysia 0.69 * 0.71 * 0.73 * 0.75 * 0.75 * 0.71 * 0.73 * 0.68 * 0.76 * 0.47
Mexico 0.64 * 0.32 † 0.32 † 0.32 † 0.58 0.37 0.64 0.34 † 0.36 † 0.63
Nigeria 0.66 * 0.58 * 0.58 * 0.59 * 0.63 * 0.63 * 0.71 * 0.64 * 0.66 * 0.53
Peru 0.69 * 0.51 † 0.51 † 0.51 † 0.49 0.53 0.51 † 0.49 0.46 0.44
Philippines 0.68 * 0.51 † 0.49 † 0.49 † 0.69 * 0.47 0.58 * 0.56 * 0.47 † 0.46
South Africa 0.54 0.64 * 0.63 * 0.61 * 0.81 * 0.68 * 0.61 * 0.73 * 0.63 * 0.49
Thailand 0.80 * 0.68 * 0.73 * 0.71 * 0.71 * 0.64 * 0.68 * 0.61 * 0.76 * 0.53
Turkey 0.59 * 0.47 † 0.46 † 0.46 † 0.49 0.47 0.47 0.56 † 0.46 † 0.59

Mean 0.66 0.53 0.56 0.57 0.60 0.54 0.61 0.56 0.58 0.53
Median 0.67 0.53 0.55 0.56 0.62 0.55 0.63 0.58 0.64 0.53
#>0.5 14 10 9 10 9 8 12 9 8 9

Table 10 - Directional Accuracy: Success Ratio of Eight-Quarter-Ahead Forecasts

Notes: Data are described in Table 1. Columns report the ratio of success in directional accuracy. Values in bold (*) indicate that the null hypothesis of no dependence between sign(forecast change) and sign(actual change) 
is rejected at 10% level using the Pesaran and Timmermann (2009) test. A "†" symbol at the right of each value indicates that the test statistic is undefined due to the presence of many forecasts in one direction.



M0 M1 M2 M3 M4 M5 M6 M7 M8 M9
RW-AO RAR DAR DAR4 FAR APC BVAR2 BVAR4 BVAR2-COM TVP

Chile 0.56 0.56 † 0.60 † 0.60 † 0.65 * 0.58 † 0.55 * 0.65 * 0.58 * 0.51
China 0.80 * 0.58 * 0.60 * 0.58 * 0.71 * 0.64 * 0.51 † 0.53 † 0.60 * 0.47
Colombia 0.60 * 0.40 † 0.45 0.49 0.40 0.36 0.60 † 0.60 † 0.60 † 0.62
Hungary 0.51 0.35 † 0.35 † 0.38 † 0.36 0.44 * 0.38 0.35 † 0.35 † 0.65
Indonesia 0.71 * 0.53 * 0.62 * 0.65 * 0.65 * 0.55 * 0.55 0.60 * 0.55 0.40
India 0.60 * 0.64 * 0.64 * 0.67 * 0.58 * 0.60 * 0.56 0.56 * 0.62 * 0.56
Malaysia 0.71 * 0.69 * 0.69 * 0.64 * 0.71 * 0.69 * 0.62 0.60 * 0.60 * 0.42
Mexico 0.73 * 0.44 † 0.44 † 0.44 † 0.56 0.47 0.56 † 0.56 0.56 0.58
Nigeria 0.69 * 0.56 * 0.55 * 0.53 * 0.62 * 0.62 * 0.55 0.64 * 0.67 * 0.53
Peru 0.80 * 0.53 † 0.53 † 0.53 † 0.40 0.56 0.53 † 0.53 0.55 0.51
Philippines 0.80 * 0.53 * 0.53 * 0.55 * 0.69 * 0.56 * 0.64 * 0.60 * 0.64 * 0.47
South Africa 0.56 0.62 * 0.67 * 0.67 * 0.84 * 0.67 * 0.56 0.71 * 0.67 * 0.51
Thailand 0.64 * 0.67 * 0.67 * 0.67 * 0.73 * 0.71 * 0.64 * 0.49 0.65 * 0.60 *
Turkey 0.60 * 0.47 † 0.45 † 0.45 † 0.36 0.44 0.38 0.56 † 0.49 0.47

Mean 0.66 0.54 0.56 0.56 0.59 0.56 0.54 0.57 0.58 0.52
Median 0.66 0.55 0.57 0.56 0.64 0.57 0.55 0.58 0.60 0.51
#>0.5 14 10 10 10 10 10 12 12 12 9

Notes: Data are described in Table 1. Columns report the ratio of success in directional accuracy. Values in bold (*) indicate that the null hypothesis of no dependence between sign(forecast change) and sign(actual change) 
is rejected at 10% level using the Pesaran and Timmermann (2009) test. A "†" symbol at the right of each value indicates that the test statistic is undefined due to the presence of many forecasts in one direction.

Table 11 - Directional Accuracy: Success Ratio of Twelve-Quarter-Ahead Forecasts



h=1 h=4 h=8 h=12 Average (h=8,12) Average
Mexico 8 9 8 9 9 9
Peru 7 9 9 9 9 9
Hungary 4 9 9 8 9 8
Colombia 7 8 7 5 6 7
Nigeria 4 9 7 6 7 7
Indonesia 2 8 8 7 8 6
Philippines 2 7 7 8 8 6
Turkey 5 7 5 5 5 6
Chile 3 7 6 4 5 5
India 1 5 7 2 5 4
China 1 1 4 8 6 4
Thailand 0 3 4 1 3 2
Malaysia 0 1 3 1 2 1
South Africa 0 1 0 0 0 0

Table 12 - Ranking per Number of Statistical Significant Cases (U-Theils; #pv<.1)



h=1 h=4 h=8 h=12 Average (h=8,12) Average
FAR 4 9 8 8 8 7
BVAR2 4 8 9 8 9 7
TVP 2 10 11 8 10 8
BVAR2-COM 6 9 10 6 8 8
RAR 4 9 9 10 10 8
DAR 4 9 10 10 10 8
APC 6 9 10 10 10 9
BVAR4 7 10 11 7 9 9
DAR4 8 11 11 11 11 10

Table 13 - Ranking of Competing Models per Relative RMSPE (U-Theils<1, #pv<.1)



M1-M9 M4 and M6 M1-M9 M4 and M6
Average Average Average Average

One-quarter ahead
Mean 0.944 0.920 0.559 0.575
Median 0.999 1.015 0.561 0.576
#<1; #>0.5 7 6 10 12
#pv<.1 3 4 8 8
Four-quarter ahead
Mean 0.768 0.783 0.590 0.593
Median 0.834 0.859 0.571 0.595
#<1; #>0.5 11 11 12 12
#pv<.1 8 7 7 7
Eight-quarter ahead
Mean 0.783 0.809 0.561 0.611
Median 0.883 0.915 0.576 0.661
#<1; #>0.5 12 12 9 10
#pv<.1 6 7 9 9
Twelve-quarter ahead
Mean 0.818 0.815 0.573 0.592
Median 0.921 0.917 0.600 0.627
#<1; #>0.5 10 10 10 11
#pv<.1 6 6 7 9
Averages (all horizons)
Mean 0.828 0.832 0.570 0.593
Median 0.909 0.927 0.577 0.615
#<1; #>0.5 10 10 10 11
#pv<.1 6 6 8 8

Table 14 - Forecast Averages
Relative RMSPE Directional accuracy
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