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Abstract

We propose an extension of the Generalized Autocontour (G-ACR) tests
(González-Rivera and Sun, 2015) for one-step-ahead dynamic specifications of
conditional densities in-sample and of forecast densities out-of-sample. The new
tests are based on probability integral transforms (PITs) computed from bootstrap
conditional densities that incorporate the parameter uncertainty without assuming
any particular forecast error distribution. Consequently, the parametric specification
of the conditional moments can be tested without relying on any particular error
distribution. We show that the asymptotic distributions of the bootstrapped G-ACR
(BG-ACR) tests are well approximated using standard asymptotic distributions.
Furthermore, the proposed tests are easy to implement and are accompanied by
graphical tools which provide suggestions about the potential misspecification. The
results are illustrated by testing the dynamic specification of the Heterogenous
Autoregressive (HAR) model when fitted to the popular U.S. volatility index VIX.
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PIT

1. Introduction

Density forecasting is rapidly becoming a very active and important area of

research in the analysis of economic and financial time series. The need to consider
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the full predictive density has long been recognized in the related literature; see

Tay and Wallis (2000) for a survey. There are several reasons for this growing

interest in density forecasting. First, complete probability distributions over outcomes

provide helpful information for making economic decisions; see Granger and Pesaran

(2000a,b). Second, density forecasts provide a characterization of forecast uncertainty

which can be useful to central banks; see Britton et al. (1998) for the fan charts of

the Bank of England and Alessi et al. (2014) for measures of economic uncertainty

during the Global Financial Crisis of the Federal Reserve Bank of New York.

Soyer and Hogarth (2012) also propose incorporating measures of uncertainty to

avoid the illusion of predictability. Third, in the presence of non-normal forecast

errors, even single forecast intervals may not provide an adequate summary of the

expected future; see, for example, Lam and Veall (2002). Fourth, density forecasts

are also important in the presence of realistic economic loss functions which cannot

be reduced to the comparison of Mean Squared Forecast Errors of point forecasts; see

Diebold and Mariano (2002) and Patton and Timmermann (2007). Furthermore, in

some applications, often the object of interest is a particular quantile of the forecast

distribution as, for example, when forecasting the Value-at-Risk (VaR) of a given

stock or portfolio; see Nieto and Ruiz (2016) for a recent survey on VaR forecasting.

As a consequence, in an increasing number of empirical applications, forecast densities

are obtained for macroeconomic and financial variables; see, for example, Fair

(1980), for one of the first applications of computing probability forecasts using a

macroeconomic model. Garratt et al. (2003), Giordani and Villani (2010), Jore et al.

(2010), Clark (2011), Baumeister and Kilian (2012), Clark and Ravazzolo (2015) and

Ravazzolo and Rothman (2016) are some more recent macroeconomic applications.

The number of applications in the context of financial variables is very broad covering

the construction of densities for both returns and volatilities; see, Andersen et al.

(2003), Clements et al. (2008), Corradi et al. (2009), Maheu and McCurdy (2011)

and Hallam and Olmo (2013, 2014) just to mention a few applications. Note that, in

some of these applications, the forecasting densities are multivariate.

A problem often faced by forecasters is testing the correct specification of a

conditional forecast density; see, for example, Mitchell and Wallis (2011). Appro-

priate tests should take into account that the forecast conditional distribution is

often unknown and the specification of conditional moments is also unknown and

has estimated parameters. Furthermore, a useful test will indicate the source of

rejection of a given forecasting model, that is, whether it is rejected because of the

specification of the shape of the distribution or because of the specification of the

conditional moments.
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Many tests available in the literature are based on testing a joint hypothesis of

uniformity and independence (i.i.d. U(0,1)) of the probability integral transforms

(PITs), which are applicable regardless of the particular user’s loss function. Among

these tests, the most popular is due to Diebold et al. (1998); see also Berkowitz

(2001) and Chen and Fan (2004) for extensions. Intuitively, the i.i.d. assumption of

the PITs is related with the correct specification of the conditional moments, while

the U(0,1) property characterizes the correct specification of the distribution. The

PITs contain rich information on model misspecification which can be revealed by

using their histogram and autocorrelogram as suggested by Diebold et al. (1998).

However, none of these visual devices take into account the uncertainty associated

with parameter estimation. Furthermore, it is nontrivial to develop a formal test for

the joint hypothesis of independence and uniformity of the PITs. The well-known

Kolmogorov-Smirnov test, checks uniformity under the independence assumption

rather than testing both properties jointly. Consequently, it would easily miss

the non-independent alternatives when PITs have a marginal uniform distribution.

Moreover, the Kolmogorov-Smirnov test does not take into account the impact of

parameter estimation uncertainty on the asymptotic distribution of the statistic. To

solve this problem, Bai (2003) proposes a Kolmogorov-Smirnov-type test based on a

martingale transformation of the PITs whose asymptotic distribution is free from the

impact of parameter estimation. However, the test proposed by Bai (2003) only checks

uniformity and, consequently, it has no asymptotic unit power if the transformed PITs

are uniform but not independent; see Corradi and Swanson (2006). Alternatively,

Hong and Li (2005) propose a nonparametric-kernel-based test with power against

violations of both independence and density functional form. Nevertheless, it depends

on the choice of a bandwidth and, consequently, it is problematic how to choose it in

an empirical context.

Instead of testing for independence and uniformity of PITs, González-Rivera et al.

(2011) and González-Rivera and Yoldas (2012) propose autocontour (ACR) tests to

evaluate the adequacy of conditional forecast densities. Relying on autocontours

allows to obtain a graphical tool that can be very helpful for guiding the modelling.

Moreover, it permits to focus on different areas of the conditional density in order

to assess those regions of interest. The ACR test, which can be applied to both

original series and model residuals, has several advantages: i) it has standard

convergence rates and standard limiting distributions that deliver superior power;

ii) it is computationally easy to implement as it is based on counting processes; iii) it

does not require either a transformation of the original data or an assessment of the

Kolmogorov goodness of fit; and iv) it explicitly accounts for parameter uncertainty.
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Yet, it assumes a parametric time-invariant function of the forecast density and it

is complicated to be implemented to multivariate forecast densities. To overcome

these problems, González-Rivera and Sun (2015) propose the generalized autocontour

(G-ACR) test, that is based on PITs instead of original observations or residuals.

In this way, the G-ACR test inherits the advantages of using PITs and of using

autocontours. However it is still based on assuming a particular specification of the

conditional density in order to compute the PITs. Therefore, when a given forecasting

model is rejected, it is difficult to disentangle whether the rejection can be attributed

to the assumed functional form of the error distribution or to the specification of the

conditional moments. González-Rivera and Sun (2015) point out that the G-ACR

tests are more powerful for detecting departures from the distributional assumption

than for detecting misspecified dynamics. Furthermore, there are applications in

which the density does not have a known closed-form solution, as for example,

multi-step predictive densities in non-linear or non-Gaussian models.

In this paper, we propose an extension of the G-ACR tests for dynamic

specification of a density model (in-sample tests) and for evaluation of forecast

densities (out-of-sample tests). Our contribution lies on computing the PITs from

a bootstrapped conditional density so that no assumption on the functional form

of the forecast error density is needed2. The only restrictions required on the

error density are those needed to guarantee that the estimator of the parameters

of the conditional moments is consistent and asymptotically Normal distributed.

The bootstrap procedure allows for the incorporation of parameter uncertainty and

can be extended to multivariate systems and multi-step forecasts. We show that

the asymptotic distributions of the bootstrapped G-ACR (BG-ACR) tests are well

approximated using standard asymptotic distributions. The proposed approach is

very easy to implement and particularly useful to evaluate forecast densities when the

error distribution is unknown. Furthermore, using graphical devices, the procedure

allows the identification of the source of misspecification, namely, whether, it is the

error distribution, or linear or non-linear dynamics.

The rest of the paper is organized as follows. In section 2, we briefly describe

the G-ACR test. Section 3 contains the main contribution of this paper with the

2Bootstrapping was also proposed by Tsay (1992) for model checking because of its flexibility. The
essence of the procedures proposed by Tsay (1992) is to obtain the empirical distribution of a specified
functional via parametric bootstrap, which then serves to compare the corresponding functional
quantity. The spirit of the procedure proposed in this paper is very similar. However, differently
from Tsay (1992), we do not assume known parameters or a known distributional assumption of the
errors.
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description of the new proposed BG-ACR tests. Their asymptotic properties and

finite sample performance are also analyzed when implemented in-sample. Section

4 is devoted to analyzing their out-of-sample behavior. An empirical application

to illustrate the advantages of the BG-ACR tests, when implemented to test for

the adequacy of the Heterogeneous Autoregressive (HAR) model to obtain forecast

densities of the VIX volatility index, is carried out in section 5. Finally, section 6

concludes.

2. The G-ACR test

In this section, we briefly describe the G-ACR test proposed by

González-Rivera and Sun (2015).

Let {yt}Tt=1 denote the random process of interest with conditional density function

ft(yt|Yt−1), where Yt−1 = (y1, ..., yt−1) is the information set available up to time t-1.

Observe that the random process yt might enjoy of very general statistical properties,

e.g. heterogeneity, dependence, etc. A conditional model is constructed by specifying

a conditional mean, conditional variance or other conditional moments of interest,

and making distributional assumptions on the functional form of ft(yt|Yt−1). Based

on the conditional model, the researcher might construct a density forecast denoted

by gt(yt|Yt−1) and obtain a sequence of PITs of {yt}Tt=1 w.r.t gt(yt|Yt−1) as follows

ut =

∫ yt

−∞

gt(vt|Yt−1) dvt. (1)

If gt(yt|Yt−1) coincides with the true conditional density, ft(yt|Yt−1), then the sequence

of PITs, {ut}Tt=1, must be i.i.d. U(0, 1); see Rosenblatt (1952) and Diebold et al.

(1998). Therefore, the null hypothesis H0 : gt(yt|Yt−1) = ft(yt|Yt−1) is equivalent to

the null hypothesis

H ′
0 : {ut}Tt=1 is i.i.d. U(0, 1). (2)

Note that, if the forecast density coincides with the true DGP, then it is preferred

by all forecasters regardless of their particular loss function; see Diebold et al. (1998)

and Granger and Pesaran (2000a,b). In order to compute the PIT in equation (1),

one needs to assume a particular distribution function for gt(yt|Yt−1). Simple tests

of independence and uniformity, such as, the Kolmogorov-Smirnov test suffer from

the problems described in the introduction. Alternatively, González-Rivera and Sun

(2015) propose using autocontours to evaluate the PITs.
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Define G-ACRk,αi
as the set of points in the plane (ut, ut−k) such that the square

with
√
αi-side contains αi% of observations, i.e.,

G-ACRk,αi
= {B(ut, ut−k) ⊂ ℜ2|0 ≤ ut ≤

√
αi and 0 ≤ ut−k ≤ √

αi, s.t. : ut×ut−k ≤ αi}.
(3)

Define also the following indicator series Ik,αi

t :

Ik,αi

t = 1((ut, ut−k) ∈ G-ACRk,αi
) = 1(0 ≤ ut ≤

√
αi, 0 ≤ ut−k ≤

√
αi). (4)

If gt(yt|Yt−1) is a consistent estimator of ft(yt|Yt−1), then I
k,αi

t is an asymptotically

Bernoulli MA process whose order depends on k. The sample proportion of PIT pairs

(ut, ut−k) within the G-ACRk,αi
cube is given by

α̂i =

T∑
t=k+1

Ik,αi

t

T − k
. (5)

Consider the statistic tk,αi
, given by

tk,αi
=

√
T − k(α̂i − αi)

σαi

, (6)

where σ2
αi

= αi(1−αi)+2α
3/2
i (1−α1/2

i ). González-Rivera and Sun (2015) show that,

under the null hypothesis in (2), the tk,αi
statistics in (6) is asymptotically standard

Normal distributed.

The t-statistic in (6) is constructed for a single fixed autocontour, αi, and a single

fixed lag, k. However, it can be generalized to a set of lags and a fixed autocontour

or to several autocontours with a fixed lag. In the first case, for a fixed autocontour

αi, define Lαi
= (ℓ1,αi

, ..., ℓK,αi
)′ which is a K × 1 stacked vector with element ℓk,αi

=√
T − k(α̂i−αi). Under H

′
0 in (2), L′

αi
Λ−1

αi
Lαi

is asymptotically χ2
K distributed, where

a typical element of the asymptotic covariance matrix, Λαi
, is given by:

λj,k =




αi(1− αi) + 2α

3/2
i (1− α

1/2
i ), j = k,

4α
3/2
i (1− α

1/2
i ), j 6= k.

Alternatively, for a fixed lag k, define Ck = (ck,1, ..., ck,C)
′ which is a C×1 stacked

vector with element ck,i =
√
T − k(α̂i−αi). Once more, underH ′

0 in (2), C ′
kΩ

−1
k Ck has
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asymptotically a χ2
C distribution, where a typical element of the asymptotic covariance

matrix, Ωk, is given by:

ωi,j =





αi(1− αi) + 2α
3/2
i (1− α

1/2
i ), i = j,

αi(1− αj) + 2αiα
1/2
j (1− α

1/2
j ), i < j,

αj(1− αi) + 2αjα
1/2
i (1− α

1/2
i ), i > j.

If the researcher is interested in partial aspects of the densities, such as, a

particular collection of quantiles, it is more informative to examine the Lαi
statistic,

which incorporates information for all desired k lags. On the other hand, if he is

interested in the whole distribution, Ck collects information on all C autocontours

desired, given a fixed lag k.

The tests described above are based on a given known predictive density

gt(yt|Ωt−1). However, in practice, the parameters associated with the moments of this

density need to be estimated. González-Rivera and Sun (2015) analyze the effects of

parameter estimation on the asymptotic distribution of tk,αi
and, consequently, on Lαi

and Ck, and conclude that the corresponding adjustments to the asymptotic variance

are model dependent, and consequently, difficult to calculate analytically. So as to

overcome this drawback, they propose a fully parametric bootstrap procedure to

approximate the asymptotic variance based on obtaining random extractions from

the known error predictive density assumed under the null hypothesis.

The G-ACR tests described above can be implemented both in-sample and

out-of-sample. González-Rivera and Sun (2015) show that when testing the

out-of-sample specification, the importance of parameter uncertainty will depend on

both the forecasting scheme and the size of the estimation sample (T ) relative to

the forecast sample (H). Implementing the tests to out-of-sample forecast densities,

the parameter uncertainty will distort their sizes as long as the proportion of the

out-of-sample and in-sample sizes, H and T , respectively, is large. However, under

the assumption of
√
T -consistent estimators, if T −→ ∞, H −→ ∞ and H/T −→ 0

as T −→ ∞, parameter uncertainty is asymptotic negligible, and no adjustment is

needed for the test.

Finally, note that, if any of the G-ACR tests described above rejects the null

hypothesis, there is not any indication about whether the rejection is due to an

inadequate assumption about the error distribution or because the dynamics of the

model are misspecified. González-Rivera and Sun (2015) point out that the G-ACR
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tests are more powerful for detecting departures from the distributional assumption

than for detecting misspecified dynamics.

3. In-sample bootstrap BG-ACR tests

In this section, we propose a modification of the G-ACR test which allows testing

for the specification of the conditional moments without making any particular

assumption on the conditional distribution. We also justify heuristically the

asymptotic distribution of the corresponding statistics and carry out Monte Carlo

experiments to establish the finite sample performance of the new proposed tests.

3.1. Bootstrap predictive densities

Consider the following parametric model for the series of interest, yt, t = 1, ..., T ,

yt = µt + σtεt, (7)

where µt and σ2
t are the conditional mean and variance of yt, which are specified

as parametric functions of Yt−1. Finally, εt is a strict white noise process with

distribution Fε, such that E(εt) = 0 and E(ε2t ) = 1. The parameters governing

the conditional mean and variance need to be restricted to guarantee stationarity

and the conditions required for their estimator to be consistent and asymptotically

Normal. Asymptotic Normality of the parameter estimator is a requirement for the

bootstrap to be asymptotically valid for the estimation of its sample distribution;

see, for example, Hall and Yao (2003). Note that the asymptotic Normality of the

estimator usually also depends on the distribution of the errors which should also be

accordingly restricted.

A particular specification of (7) is following the popular AR(1)-GARCH(1,1)

model which will be considered in this paper to illustrate the proposed tests

yt = µ+ φyt−1 + at, (8)

at = εtσt,

σ2
t = ω + αa2t−1 + βσ2

t−1,

where |φ| < 1, α + β < 1, ω > 0 and α, β ≥ 0. These assumptions are required

to guarantee the stationarity of yt and the positiveness of the conditional variance.

Our focus on the AR(1)-GARCH(1,1) model is due to its broad implementation in
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empirical applications; see, for example, Manner and Reznikova (2012) who assume

Student errors in the context of VaR forecasts and Menćıa and Sentana (2016).

In this paper, we consider the Gaussian Quasi-Maximum Likelihood (QML)

estimator of the parameters of the AR(1)-GARCH(1,1) model in (8) obtained by

maximizing the Gaussian likelihood. Francq and Zakoian (2004) prove the strong

consistency and asymptotic normality of the QML estimator of the ARMA-GARCH

model under finite fourth order moment of the observed series.

It is worth noting that the procedure proposed in this paper to obtain bootstrap

in-sample conditional densities and the consequent BG-ACR statistics to evaluate

them, can be applied to any other parametric specifications of the conditional mean

and variance as far as a consistent and asymptotically Normal estimator of the

parameters is available; see, for example, Mika and Saikkonen (2011) who prove the

strong consistency and asymptotic normality of the Gaussian QML estimator allowing

both the conditional mean and the conditional variance to be nonlinear.

Next, we describe the bootstrap algorithm proposed to obtain in-sample

one-step-ahead bootstrap densities of yt in the context of the AR(1)-GARCH(1,1)

model in (8). The algorithm is based on the residual bootstrap algorithms of

Pascual et al. (2004, 2006) for the construction of forecast densities in linear ARMA

models and GARCH models, respectively.

In-sample bootstrap algorithm

Step 1 Obtain the residuals

Estimate the parameters of model in (8) by a two-step QML estimator: µ̂, φ̂,

ω̂, α̂ and β̂. Obtain the residuals ε̂t =
ât
σ̂t
, t = 3, ..., T , where

ât = yt − µ̂− φ̂yt−1 (9)

and

σ̂2
t = ω̂ + α̂â2t−1 + β̂σ̂2

t−1, (10)

with â2 = y2 − µ̂ − φ̂y1 and σ̂2
2 = ω̂/(1 − α̂ − β̂). Denote by Fε̂ the empirical

distribution of the centered and scaled residuals.

Step 2 Bootstrap replicates of parameter estimates
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For t = 3, ..., T , obtain recursively a bootstrap replicate of yt that mimics the

dynamic dependence of the original series as follows

σ
∗2(b)
t = ω̂ + α̂a

∗2(b)
t−1 + β̂σ

∗2(b)
t−1 , (11)

a
∗(b)
t = ε

∗(b)
t σ

∗(b)
t ,

y
∗(b)
t = µ̂+ φ̂y

∗(b)
t−1 + a

∗(b)
t , (12)

where a
∗(b)
2 = â2, σ

∗2(b)
2 = σ̂2

2 , y
∗(b)
2 = y2 and ε

∗(b)
t are random extractions

with replacement from Fε̂. Estimate the parameters by QML using
{
y
∗(b)
t

}T

t=3
,

obtaining µ̂∗(b), φ̂∗(b), ω̂∗(b), α̂∗(b) and β̂∗(b).

Step 3 Obtain in-sample bootstrap one-step-ahead predictive densities

For t = 3, ..., T , obtain in-sample one-step-ahead estimates of volatilities and

observations as follows:

σ
∗∗2(b)
t = ω̂∗(b) + α̂∗(b)(yt−1 − µ̂∗(b) − φ̂∗(b)yt−2)

2 + β̂∗(b)σ
∗∗2(b)
t−1 , (13)

y
∗∗(b)
t = µ̂∗(b) + φ̂∗(b)yt−1 + σ

∗∗(b)
t ε

∗(b)
t , (14)

where σ
∗∗2(b)
2 = ω̂∗(b)/(1 − α̂∗(b) − β̂∗(b)) and ε

∗(b)
t are random extractions with

replacement from Fε̂.

Step 4 Repeat steps 2 and 3 for b = 1, ..., B(1).

Note that in step 2, we obtain replicates of y∗t which are not conditional on

{y1, ..., yt−1}. In (11), σ∗2
t depends on a∗2t−1 while in (12) y∗t depends on y

∗
t−1. Therefore,

independent replicates of the process are generated to estimate the parameters and

to obtain an estimate of their sample distribution. However, in step 3, the bootstrap

replicates, σ∗∗2
t and y∗∗t , in (13) and (14), are obtained incorporating the parameter

uncertainty through the bootstrap estimates of the parameters but always conditional

on {y1, ..., yt−1}. In this way, at each moment of time, t = 3, ..., T , the above algorithm

generates B(1) bootstrap replicates of yt conditional on Yt−1, which incorporate

the parameter uncertainty and do not rely on any specific assumption about the

distribution of εt. In order to decide the number of bootstrap replicates needed

to obtain an appropriate estimate of the predictive density, one can implement the

procedure proposed by Andrews and Buchinsky (2000). Note that the number of
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bootstrap replicates could be larger when dealing with non-linear GARCH errors

than when the model is linear.3

In-sample PITs can be easily computed as follows

ut =
1

B(1)

B(1)∑

b=1

1(y
∗∗(b)
t < yt). (15)

The corresponding indicators, Ik,αi

t , and sample proportions, α̂i, can be computed

as in (4) and (5), respectively. Finally, the tk,αi
, Lαi

and Ck statistics can be calculated

as explained above.

In order to illustrate how the proposed procedure works, we have generated a time

series of size T=5000 from the following homoscedastic AR(1) model:

yt = φyt−1 + εt, (16)

where φ = (0.5, 0.95) and εt is i.i.d. with either N(0,1) or centered and standardized

Student-5 and χ2
(5) distributions. In each case, an AR(1) model is fitted to the

artificial series with the parameters estimated by QML. Then, the in-sample PITs

are computed both assuming normal errors as in González-Rivera and Sun (2015)

and implementing the bootstrap algorithm described above based on B(1) = 999

replicates; see Pascual et al. (2004, 2006) and Pan and Politis (2016) for the same

number of replicates and Horváth et al. (2004) for B(1) = 1499. Figure 1 plots the

autocontours for αi=0.2 and 0.8 together with the pairs (ut, ut−1) for the model

AR(1) with φ=0.5 and εt ∼ N(0, 1) (first row); φ=0.5 and εt ∼Student-5 (second

row); φ=0.5 and εt ∼ χ2
(5) (third row); and φ=0.95 and εt ∼ χ2

(5) (fourth row). First

of all, note that when the PITs are computed using the bootstrap densities (first

column of Figure 1), they are uniformly distributed on the surface regardless of the

true error distribution of the underlying DGP. Therefore, they suggest that the fitted

AR(1) model is adequate. However, when the PITs are computed as in the G-ACR

procedure (second column of Figure 1), they are not uniformly distributed unless the

errors are Gaussian. In this case, the model is rejected but there is not indication

about whether it is rejected because of the specification of the conditional mean or

3In step 2, y
∗(b)
2 can be chosen randomly from {y1, ..., yT } as proposed by Pan and Politis (2016)

in the context of AR(p) models, say y
∗(b)
2 = y

(b)
t∗ . In this case, σ

∗2(b)
2 and a

∗(b)
2 should be chosen

accordingly as σ
∗2(b)
2 = σ̂

2(b)
t∗ and a

∗(b)
2 = â

(b)
t∗ . Furthermore, Pan and Politis (2016) propose using

predictive instead of fitted residuals.
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because of the assumed error distribution.

Consider now the following three DGPs:

yt = 0.3yt−1 + 0.6yt−2 + εt. (17)

yt =

{
0.5yt−1 + εt, for t < T/2.

1 + 0.5yt−1 + εt, for t ≥ T/2.
(18)

yt = 0.5yt−1 + εtσt. (19)

σ2
t = 0.05 + 0.5ε2t−1σ

2
t−1 + 0.45σ2

t−1,

with εt being an independent white noise with either N(0,1) or centered and

standardized Student-5 or χ2
(5) distributions. As above, an AR(1) model is fitted

to each of the simulated series and its parameters estimated by QML. Then the PITs

are computed assuming Normal errors and using the bootstrap procedure. Figure 2

plots the autocontours for αi=0.2 and 0.8 together with the pairs (ut, ut−1) when the

DGP is the AR(2) model in (17) with χ2
(5) errors (first row); the AR(1) model with

structural break in the mean in (18) with εt ∼ χ2
(5) (second row); the GARCH model

in (19) with Normal errors (third row); and the GARCH model in (19) with χ2
(5)

errors (fourth row). We can observe that, when the PITs are based on the bootstrap

densities (first column of Figure 2), they suggest the source of the misspecification. In

the first row, when the AR(1) model is fitted to the AR(2) series, we observe a linear

relation between the PITs. In the second row, when the DGP is the AR(1) model with

a break in the mean, the PITs do not show any particular linearity or non-linearity

but they are concentrated on the top-right corner of the plot. Finally, when the DGP

is the AR(1)-GARCH(1,1) model, we observe a non-linear relation between the PITs.

Furthermore, in this last case, the autocontour plots are very similar regardless of

the error distribution of the DGP. Comparing the bootstrap-based PITs with those

obtained using the normal densities (second column of Figure 2), the rejection of the

fitted models is also clear although there is not an obvious indication for its source.

The asymptotic distributions of the tk,αi
, Lαi

and Ck statistics depend on the

asymptotic validity of the residual bootstrap algorithm described above. The

asymptotic validity of the residual bootstrap procedure when implemented to obtain

predictive densities in the context of linear ARMA models, has been established by

Pascual et al. (2004). However, as far as we know, there is not a formal proof of the
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validity of the algorithm to construct predictive densities in the context of nonlinear

GARCH models. In order to show that the algorithm is asymptotically valid, one

needs first to show that the bootstrap procedure in step 2, generates asymptotically

valid estimates of the model parameters. When implemented in GARCH models,

Hidalgo and Zaffaroni (2007) show the first order validity of θ̂∗ = (ω̂∗, α̂∗, β̂∗) for an

ARCH(∞) process characterized by a particular decay in the ARCH parameters.4

If the bootstrap procedure were asymptotically valid for the estimation of the

parameters, using the arguments in Pascual et al. (2004) and Reeves (2005), one can

establish its validity for the predictive densities and consequently, the distribution of

α̂i should be as in (6) with the asymptotic variance corrected to take into account

the parameter uncertainty.5

Following the suggestion of González-Rivera and Sun (2015), the variance of α̂i is

approximated using a bootstrap procedure. B(2) bootstrap replicates, {y∗(b)t }Tt=1 are

generated as in (12) and α̂
∗(b)
i is obtained using the bootstrap series as if they were

the original series. The bootstrap variance of α̂i is given by

σ∗2
αi

=
1

B(2) − 1

B(2)∑

b=1


α̂∗(b)

i − 1

B(2)

B(2)∑

b=1

α̂
∗(b)
i




2

, (20)

and the corresponding t-statistic is

t∗αi
=

(α̂i − αi)

σ∗
αi

, (21)

which asymptotically has a N(0,1) distribution. In this paper, results are based on

B(2)=500 bootstrap replicates to compute σ∗
αi
; see González-Rivera and Sun (2015).

Note that the number of replicates needed to estimate standard errors is smaller than

that needed to estimate intervals; see Efron (1987).

4Shimizu (2010, 2013, 2014) prove the consistency of the bootstrap QML estimators in the context
of an AR(1)-ARCH(1) model. However, the residual bootstrap considered by Shimizu (2010, 2013,
2014) is not exactly the same as that considered in this paper. All the trajectories share the
same estimated conditional mean and variance when generating bootstrap replicates to estimate the
parameters. It is important to point out that Corradi and Iglesias (2008) cast some doubts on the
asymptotic validity of the residual bootstrap described in step 2. Alternatively, they show that a
block bootstrap based on resampling the likelihood as proposed by Gonçalves and White (2004) is
asymptotically valid. Therefore, in step 2 of the algorithm described above, one can consider using
the block bootstrap instead of the residual bootstrap.

5Monte Carlo results on the size distortions of the t-statistic when the asymptotic variance is
computed as in (6) are available upon request.
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Obviously, the variances and covariances of the portmanteau statistics can also be

computed using the same arguments. In particular, a typical element of the covariance

matrix of Lαi
, say λ∗j,k, is obtained as follows:

λ∗j,k =





σ2∗
αi
, if j = k,

1
B(2)−1

B(2)∑
b=1

(
α̂
∗(b)
j,i − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
j,i

)(
α̂
∗(b)
k,i − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
k,i

)
. if j 6= k,

(22)

Similarly, a typical element of the covariance matrix of Ck, say ω
∗
i,j, is obtained as

follows:

ω∗
i,j =





σ2∗
αi
, if i = j,

1
B(2)−1

B(2)∑
b=1

(
α̂
∗(b)
k,i − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
k,i

)(
α̂
∗(b)
k,j − 1

B(2)

B(2)∑
b=1

α̂
∗(b)
k,j

)
, if i 6= j.

(23)

3.2. Monte Carlo experiments

In this section, we perform Monte Carlo simulations to assess the finite sample

properties of the proposed statistics. For the size assessment, the DPG is a linear

AR(1). We consider a model far from the non-stationary region and another one near

the non-stationary region with different error distributions. For the power assessment,

we consider linear and non-linear alternatives. The number of Monte Carlo replicates

is R = 1000 and the sample size T = 50, 100, 300, 1000 and 5000. The number of

bootstrap replicates is B(1) = 1000, except if T = 5000, when we use B(1) = 2000.

Finally, the number of bootstrap replicates used to compute the variance of α̂i, Lαi

and Ck is B(2) = 500.

3.2.1. Studying the size

To investigate the size properties of the tests, we consider as DGP the AR(1)

in equation (16). For each Monte Carlo replicate, we compute the proportions α̂i,

for k = 1, ..., 5, and their bootstrap variances. Then, we compute the Monte Carlo

averages and standard deviations of α̂i, together with the averages of the bootstrap

standard deviations and the percentage of rejections of the null hypothesis when the

nominal size of the test is 5%. Tables 1 and 2 report the Monte Carlo results for

k=1 when φ = 0.5 and the error is Gaussian and φ = 0.95 and the errors are χ2
(5),

respectively. First of all, we observe that even for the smallest sample size of T = 50,

the Monte Carlo averages of α̂i are rather close to αi and that the average of the
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bootstrap standard deviations is a good approximation to the Monte Carlo standard

deviation of α̂i for moderate sample sizes. However, note that for relatively small

sample sizes, the bootstrap standard deviations tend to overestimate the empirical

standard deviations of α̂i, mainly for the largest quantiles. Consequently, the size

of the t1,αi
statistic is smaller than the nominal. As the sample size increases, the

percentage of rejections gets rather close to the 5% nominal level. The conclusions

are quite similar for the close-to-unit-root model with χ2
(5) errors.

We also analyze the finite sample performance of the two portmanteau tests. Table

3 reports the Monte Carlo percentage of rejections of L5
αi

(adding up the information

of the first five lags) and of C1 (adding information of the thirteen quantiles previously

considered) for the same two models considered in Tables 1 and 2. Looking at the

results of L5
αi
, we observe that, regardless of the DGP considered, the Monte Carlo

percentage of rejections is very close to the nominal size with a tendency to overreject

for the largest quantiles. On the other hand, the results of C1 show that it rejects

less than the nominal size when the sample size is not large enough. However, if the

sample size is large, the empirical size is larger than the nominal.

3.2.2. Studying the power

With the purpose of studying the finite sample power of the tests, we generate

replicates by the three models in equations (17), (18) and (19) and fit an AR(1)

model. Under the null hypothesis, we test the correct specification of the AR(1) model

without drift. The DGP in (17) allows investigating the power against departures

from the independence hypothesis, while the DGP in (18) deals with the power against

breaks in the conditional mean. Finally, the DGP in (19) permits to analyze power

when the second moment is misspecified.

Tables 4 to 6 report the power results of t1,αi
, for each of the three DGPs while

Table 7 reports the results corresponding to the portmanteau tests. Consider first

the results reported in Table 4 when the DGP is the AR(2) model. We observe that

t1,αi
has high power for the intermediate autocontours around the 10%-60% levels

even when the sample size is moderately small, that is, T = 100. As the sample size

increases the power of t1,αi
approaches one. Regarding the portmanteau tests, and

in particular L5
αi
, we observe that its power is similar to the power of the t1,αi

test,

but its rejection rates are higher; see Panel A of Table 7. Furthermore, C1 also shows

high power, approaching one, even when T = 300. With respect to the DGP in (18),

corresponding to a break in the conditional mean, Table 5 shows that the power is

also higher for the intermediate autocontours when the sample sizes are small. In
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this case, the t1,αi
test is more powerful than the corresponding portmanteau tests of

Panel B in Table 7. Finally, regarding the DGP in (19), when the series are generated

by an AR(1)-GARCH(1,1) model, we observe in Tables 6 and 7 that the power of the

t1,αi
and L5

αi
tests is higher in the extreme autocontours in comparison to the power

reported by the intermediate autocontours, approaching one for T = 5000. The C1

statistic also provides power close to one, but only in large sample sizes. Overall, the

results suggest that larger sample sizes are needed to discriminate between the model

under the null hypothesis and the GARCH model in (19).

4. Out-of-sample h-step-ahead bootstrap BG-ACR tests

In this section, we extend the procedures and tests described above to h-step-ahead

out-of-sample densities. The in-sample bootstrap algorithm can be also applied

to obtain bootstrap replicates of the multi-step-ahead observations. Then, the

corresponding PITs and indicators can be computed. In order to compute the

proportion, it is necessary to obtain H − h + 1 h-step-ahead bootstrap forecast

densities. If the parameters are not reestimated each time a new observation is

available, then the in-sample algorithm can be implemented as described in section 3

with step 3 modified as follows:

Step 3’. Obtain bootstrap h-step-ahead out-of-sample forecast densities

For j = h, ..., H , obtain out-of-sample h-step-ahead estimates of volatilities and

observations as follows:

y
∗∗(b)
T+j|T+j−h = µ̂∗(b) + φ̂∗(b)y

∗∗(b)
T+j−1|T+j−h + σ

∗∗(b)
T+j|T+j−hε

∗(b)
T+h,

σ
∗∗2(b)
T+j+1|T+j−h = ω̂∗(b) + α̂∗(b)(y

∗∗(b)
T+j|T+j−h − µ̂∗(b) − φ̂∗(b)yT+j−1|T+j−h)

2 + β̂∗(b)σ
∗∗2(b)
T+j|T+j−h,

where, if h=1, y∗∗T+j−1|T+j−h = yT+j−1 and σ∗∗2
T+j−1|T+j−h = σ∗∗2

T+j−1.

At each moment T + j, j = h, ..., H , we compute the out-sample multi-period

PITs as follows

uT+j|T+j−h =
1

B(1)

B(1)∑

b=1

1(y
∗∗(b)
T+j|T+j−h < yT+j).

Note that PITs based on h-step-ahead density forecasts will generally follow a moving
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average process of order h − 1. When h >1, under the null that the predictive

density coincides with the true density, the distributional features of the PITs are

not well defined. As a result, it is only possible to test the null of a well behaved

density forecast jointly with an assumed model of the process driving the associated

multi-period PITs. Alternatively, one can choose PITs separated by h periods to

ensure an uncorrelated sample. This procedure may significantly reduce the size

of the sample available for the out-of-sample evaluation when h is relatively large.

In this case, the procedure can be implemented in several uncorrelated sub-samples

of forecasts that are h periods apart and then use Bonferroni methods to obtain a

joint test without discarding observations; see, for example, Diebold et al. (1998),

Manzan and Zerom (2008) and Rossi and Sekhposyan (2016) among others.

Using the uncorrelated PITs {uT+hi|T+h(i−1)}[H/h]
i=1 , we compute the corresponding

indicators, Ik,αi

T+hi, and the proportion

α̂i =

[H/h]∑
i=k+1

Ik,αi

T+hi

H − k
.

Finally, the t-statistic is given by

tk,αi
=

√
H − k(α̂i − αi)

σαi

,

where σ2
αi

is defined as (6). Note that σ2
αi

can be estimated either as in expression (6)

or by bootstrapping. As mentioned above, when testing the in-sample specification,

ignoring parameter uncertainty may cause severe distortions in the size of the tests.

However, when testing the out-of-sample specification, the importance of parameter

uncertainty decreases as far H/T → 0 when T → ∞. Therefore, if H is small relative

to T , one can compute the variance, σ2
αi
, by using the asymptotic expression.

As an illustration of the one-step-ahead out-of-sample performance of the tests,

R = 1000 replicates are generated by the AR(1) model in expression (16) with φ =

0.95 and εt ∼ N(0, 1). The model is estimated by OLS using T=50, 100, 300, 1000

and 5000 observations and H=50 and 500 out-of-sample one-step-ahead densities and

their corresponding PITs are obtained using the bootstrap procedure. The variance

of α̂i and the covariances in Λαi
and Ωk are computed by bootstrapping.6 Table 8

6Results based on the asymptotic expression of the variances and covariances are very similar
when H=50 and T=1000 (H/T=0.05) or T=5000 (H/T=0.01). When H=500, the results are
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reports the Monte Carlo averages and standard deviations of α̂i for k=1, together with

the averages of the bootstrap standard deviations and the percentage of rejections of

the null hypothesis for different autocontours when the nominal size of the test is fixed

at 5%. Table 9 reports the size of the corresponding L5
αi

and C1 test statistics. Table

8 shows that the size of the t-test when computed for out-of-sample one-step-ahead

densities is close to the nominal as far as T is relatively large and H/T is small.

Obviously, increasing H improves the size properties of the test as far as the ratio

H/T is still small; see the size results of the Lαi
and Ck tests which are reported in

Table 9 for H=500.

Finally, we study the finite sample power of the one-step-ahead out-of-sample

tests. With this purpose, R=1000 replicates are generated from the AR(2) model

in (17) and the AR(1)-GARCH(1,1) model in (19). Under the null hypothesis, we

consider an AR(1) process without drift. Table 10 reports the power of the t1,αi
test

when the DGP is the AR(2) model and H=500. In this case, the power increases

when the information is accumulated either over several lags or over several quantiles;

see the powers reported in Panel A of Table 12. The results corresponding to the

AR(1)-GARCH(1,1) model are reported in Table 11 for H=500. In this case, we can

observe that the power of the t1,αi
test is very low except when αi=0.01. Only when

looking at extreme low quantiles, the power is sensible as these quantiles accumulate

the ”outliers” that appear when the conditional heterocedasticity is not taken into

account. Furthermore, Panel B of Table 12 shows that the power does not increase

when accumulating information over different autocontours or over different lags.

Accumulating information in this way seems to be of no help when dealing with

non-linear misspecifications. In any case, it is important to note that in-sample

tests are expected to be more powerful than out-of-sample tests; see, for example,

Inoue and Kilian (2005).

5. Empirical application: modelling VIX

There is an increasing interest in modeling and forecasting the daily

forward-looking market volatility index (VIX) from the Chicago Board Options

Exchange (CBOE); see, for example, Whaley (2000, 2009), Engle and Gallo (2006),

Fernandes et al. (2014), Diebold and Yilmaz (2015a), Hassler et al. (2016) and

Menćıa and Sentana (2016). The VIX was originally computed as the weighted

similar if T=5000 (H/T=0.1). As mentioned above, in these cases, the parameter uncertainty is
irrelevant. These results are available upon request.
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average of the implied volatilities from eight at-the-money call and put options of

the S&P100 index with an average time to maturity of 30 days. In 2003, the VIX

was entirely revised by changing the reference index to the S&P500 index, taking

into account a wide range of strike prices for the same time to maturity and freeing

its calculation from any specific option pricing model; see Whaley (2009) for a

history of the VIX and Fernandes et al. (2014) for a detailed description of the VIX

calculation. The VIX is important since it is a barometer of the overall market

sentiment; see Whaley (2000, 2009) and Diebold and Yilmaz (2015b) who define it

as a fear index. Furthermore, it reflects both the stock market uncertainty and the

expected premium from selling stock market variance in a swap contract. Finally,

there is an active market on VIX derivatives. The number of VIX futures contracts

traded increased dramatically from about 1 million in 2007 to about 24 million

in 2012 with the largest growth occurring after 2009, likely caused by the recent

financial crisis; see, for example, Park (2016) and Song and Xiu (2016) for recent

references on pricing VIX derivatives and Menćıa and Sentana (2016) for dynamic

portfolio allocation for Exchange Traded Notes (ETNs) tracking short and mid-term

VIX futures indices. The recent development of volatility-based derivative products

generates an interest on predictive densities of volatility. Intuitively, risk averse

investors must take into account not only the expected value of the payoffs, which

can be obtained from the conditional mean forecasts, but also the risk involved,

which necessarily depends on features of the conditional density. In the context of

VIX, Konstantinidi and Skiadopoulos (2011) implement the bootstrap procedure of

Pascual et al. (2004) to obtain forecast intervals for the VIX that are then used in

a trading strategy. Konstantinidi et al. (2008) and Psaradellis and Sermpinis (2016)

also compare several specifications of the VIX for trading purposes.

It is commonly accepted that the VIX display long-memory; see, for

example, Bandi and Perron (2006), Konstantinidi et al. (2008), Shimotsu (2012),

Fernandes et al. (2014) and Hassler et al. (2016). Consequently, several authors

propose variants of the simple and easy-to-estimate approximate long-memory HAR

model of Corsi (2009) to represent and predict the VIX; see Fernandes et al. (2014),

Caporin et al. (2016) and Psaradellis and Sermpinis (2016). The HAR model is

given by

yt = φ0 + φ1yt−1 + φ5ȳt−1:5 + φ10ȳt−1:10 + φ22ȳt−1:22 + φ66ȳt−1:66 + εt, (24)

where ȳt:i = i−1
i−1∑
j=0

yt−j and εt is an independent white noise sequence.
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Alternatively, Menćıa and Sentana (2016) propose modeling the persistence of the

VIX using the Multiplicative Error Model (MEM) of Engle and Gallo (2006) with

semi-nonparametric expansion of the Gamma distribution.

In this section, we analyze the series of daily log-VIX index observed from January

2, 1990 to January 15, 2013 with a total of 5807 observations; see Fernandes et al.

(2014) for an empirical analysis of the same series and Menćıa and Sentana (2016)

for a similar period. Descriptive statistics of the full sample are reported in Table

13. We can observe that the skewness and kurtosis are not significantly different

from the assumed values under Normality when using the correction proposed by

Premaratne and Bera (2016). However, the Jarque-Bera test clearly rejects the

Normality of log-VIX. Panel (a) of Figure 3 plots the log-VIX series. With respect

to the temporal dependence, panels (b) and (c) of Figure 3 plot the correlograms of

log-VIX and its squares, respectively. The comparison of the correlations of log-VIX

and (log-VIX)2 suggests the presence of conditional heterocedasticity given that the

correlations of squares are larger than those of the levels; see the values of the

sample autocorrelations reported in Table 13. Fernandes et al. (2014) show that the

null hypothesis of a unit-root is clearly rejected. Yet, they find strong evidence of

long-memory.7

The pure HAR model in equation (24) is fitted to the full sample with the

estimated parameters reported in Table 14. Several residual diagnostics are reported

in Table 13. We can observe that the distribution of the residuals is clearly

non-Normal. Furthermore, the presence of conditional heterocedasticity is also more

evident than when looking at the original log-VIX series.

In-sample bootstrap conditional densities are computed as described in Section 3.

Figure 4 plots kernel estimates of the bootstrap densities at different moments of the

sample period. We can observe that not only the location of these densities changes

over time. Although, in general, there is a right skewness of the distribution, this

skewness is more pronounced in some particular moments. Furthermore, we can also

observe changes in the variance of the log-VIX.

After computing the in-sample PITs, they are plotted in Figure 6, where we can

observe that the PITs are not uniformly distributed. There is a concentration of PITs

in the left and right top corners, suggesting that conditional heteroscedasticity has not

7Note that the unit-root tests carried out by Fernandes et al. (2014) do not take into account
the presence of conditional heteroscedasticity. These tests should be modified as proposed by Choi
(2015).
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been modeled when computing the conditional densities for log-VIX. For comparison

purposes, we also plot in Figure 6, panel (b), the PITs computed by the procedure

of González-Rivera and Sun (2015) with the errors assumed to be Gaussian. We

observe a concentration of points in the middle, suggesting that the HAR model is

misspecified if Gaussian errors are assumed. However, as mentioned above, there is

not indication of the source of misspecification.

In order to test the null hypothesis about the adequacy of the HAR model to

represent the conditional densities of the log-VIX, Panel A of Table 17 reports the

sample proportions, α̂i, and the in-sample tests t1,αi
, L5

αi
and C13

1 . We observe

that most of the autocontours are rejected by the t1,αi
and L5

αi
test statistics. The

C13
1 test, which is computed adding information of all autocontours, rejects H0 at

1% of significance. Therefore, as suggested in Figure 6, the basic HAR model

is not appropriate to model the conditional densities of the daily log-VIX. Panel

B of Table 17 also reports the corresponding tests obtained by the procedure of

González-Rivera and Sun (2015), assuming Gaussian errors. We can see that the null

is rejected by almost all the autocontours, with the statistics being much larger than

when they are computed using the BG-ACR tests.

Based on the information of the tests and autocontours, we incorporate conditional

heteroscedasticity and estimate the following HAR-GARCH model:

yt = φ0 + φ1yt−1 + φ5ȳt−1:5 + φ10ȳt−10:5 + φ22ȳt−1:22 + φ66ȳt−1:66 + at, (25)

at = σtεt,

σ2
t = ω + αa2t−1 + βσ2

t−1.

Table 14 reports the estimation results. We can observe that the estimates of

the parameters of the conditional mean are very similar. Although the standard

errors are different, the conclusions on their significance is the same as in the

homoscedastic model. Furthermore, the parameters of the conditional variance

equation are significative with values similar to those encountered when the GARCH

model is fitted to financial returns with α̂ being rather small and α̂+ β̂ very close to

one. The residual statistics are reported in Table 13, where we can observe that the

sample autocorrelations of the squares of log-VIX are no longer significant. Finally,

Table 17, panels C and D, reports the results for the BG-ACR and G-ACR tests,

respectively. We can observe that, when implementing the G-ACR, the HAR-GARCH

model with Gaussian errors is still clearly rejected. On the other hand, the number
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of rejections when implementing the BG-ACR tests is much smaller than before. In

particular, when looking at the results for the L5
αi
, the HAR-GARCH model is only

rejected for autocontours 0.3, 0.5 and 0.6, while the basic HAR model is rejected for

eight out-of thirteen quintiles. Therefore, including the conditional heteroscedasticity

leads to a better specification if the purpose is to obtain accurate predictive densities

in-sample.

In table 17 we also present the results of the HAR-GJR model:

yt = φ0 + φ1yt−1 + φ5ȳt−1:5 + φ10ȳt−10:5 + φ22ȳt−1:22 + φ66ȳt−1:66 + at, (26)

at = σtεt,

σ2
t = ω + αa2t−1 + βσ2

t−1 + λI[at−1 < 0]a2t−1.

6. Conclusions

In this paper, we propose an extension of the G-ACR test of González-Rivera and Sun

(2015) for dynamic specification of a density model (in-sample tests) and for

evaluation of forecast densities (out-of-sample tests). Our contribution lies on

computing the PITs from a bootstrapped conditional density so that no assumption

on the functional form of the density is needed. Furthermore, the bootstrap procedure

allows for the direct incorporation of parameter uncertainty. The proposed approach

is particularly useful to evaluate forecast densities when the error distribution is

unknown. Our proposed tests have size close to the nominal and are powerful

for detecting departures from the assumed conditional density. To illustrate the

usefulness of our approach, we extend the analysis of Fernandes et al. (2014) by

evaluating the adequacy of conditional densities of the VIX daily market volatility

index when computed fitting the HAR model. Our results suggest that conditional

heteroscedasticity should be taken into account for an adequate construction of the

conditional densities of the log-VIX.

In our research agenda, there are two direct extensions of the proposed

BG-ACR tests that we plan to study. First, the extension of the proposed

test to multi-step predictive densities is of great interest; see, for example,

Jordà and Marcellino (2010), Baumeister and Kilian (2012), Staszewska-Bystrova

(2011), Staszewska-Bystrova and Winker (2013), Wolf and Wunderli (2015),

Jordá et al. (2014) and Pan and Politis (2016) for multistep forecasts based on
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bootstrap. Note that the functional form of multi-step predictive densities could be

unknown or difficult to obtain even in cases where the one-step-ahead conditional

density is known. Diebold et al. (1998) propose to partition the series of PITs into

groups for which the iid uniformity is expected if the forecast densities were indeed

correct. Analyzing this extension is left for future research.

Second, given that the tests considered in this paper are based on the information

contained in the vector of PITs which is condensed into an indicator, the tests

proposed can be extended into a multivariate framework using the multivariate

bootstrap procedures of Fresoli et al. (2015) and Fresoli and Ruiz (2016) for VARMA

and multivariate GARCH models, respectively. It is also important to note that in

a multivariate context, the PITs with respect to a multivariate conditional density

are not longer independent and uniform even if the model is correctly specified; see,

for example, Chen and Hong (2014). In the context of multivariate GARCH models,

Bai and Chen (2008) propose evaluating the distribution by using the PITs of each

individual component. However, this test may miss important information on the

joint distribution and, in particular, may fail to detect misspecification in the joint

dynamics.

Finally, the residual bootstrap implemented in this paper to obtain one-step-ahead

predictive densities can be modified in several directions. First, one can extended it

to cope with lag-order uncertainty of the ARMA lags by implementing the procedures

of Kilian (1998), Alonso et al. (2004, 2006) and Fenga and Politis (2011). Another

alternative is substituting the basic residual bootstrap implemented in this paper

to obtain the sample distribution of the parameters by the subsampling procedure

proposed by Hall and Yao (2003). Alternatively, one can implement the block

bootstrap based on resampling the likelihood proposed by Corradi and Iglesias (2008).

Although we do not expect the results to change qualitatively, the asymptotic validity

of the bootstrap can be easier to prove in the case of GARCH errors. Finally, a very

interesting research venue is implementing the new bootstrap approach proposed

by Pan and Politis (2016) for bootstrap prediction intervals in linear AR models.

This new approach is computationally fast because it does not need to generate

pseudo-series alleviating the computational burden associated with bootstrapping in

order to obtain the parameter estimator distribution and the variance of the BG-ACR

statistics.
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Figure 1: Univariate autocontours for the estimated AR(1) model with T = 5000. ACR20%,1

corresponds to the black box and the ACR80%,1 to the red box. The DGPs are the AR(1) model
with: φ=0.5 and εt ∼ N(0, 1) (first row); φ=0.5 and εt ∼ Student-5 (second row); φ=0.5 and
εt ∼ χ2

(5) (third row); and φ=0.95 and εt ∼ χ2
(5) (fourth row). The PITs were computed using the

bootstrap algorithm with B(1)=1000 (first column), or assuming Gaussian errors (second column).
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Figure 2: Univariate autocontours for estimated AR(1) model with T=5000. ACR20%,1

corresponds to the black box and the ACR80%,1 to the red box. The DGPs are: AR(2) with εt ∼ χ2
(5)

(first row); AR(1) model with break in the mean with εt ∼ χ2
(5) (second row); AR(1)-GARCH(1,1)

model with εt ∼ N(0,1) (third row); and AR(1)-GARCH(1,1) model with εt ∼ χ2
(5) (fourth row).

The PITs were computed using the bootstrap algorithm with B(1)=1000 (first column), or assuming
Gaussian errors (second column). 33
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Figure 3: Daily log-VIX is plotted in (a). In (b) are plotted the sample autocorrelations of the
levels and in (c) are plotted the sample autocorrelations of the squares of the log-VIX (in black) and
the squared sample autocorrelations of the levels (in red).
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Figure 4: In-sample bootstrap one-step-ahead densities.
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Figure 5: Univariate autocontours for the HAR model. In (a) the PITS are obtained with the
bootstrap procedure described in Section 3 and in (b) they are obtained by the procedure of
González-Rivera and Sun (2015) assuming Gaussian errors. ACR20%,1 corresponds to the black
box and ACR80%,1 to the red box.
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Figure 6: Univariate autocontours for the MEM model. The PITS are obtained by the procedure
of González-Rivera and Sun (2015) assuming that the errors have a semi-nonparametric Gamma
density as in Menćıa and Sentana (2016). ACR20%,1 corresponds to the black box and ACR80%,1

to the red box.
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Table 1: Monte Carlo size results for t1,αi
. The DGP is yt = 0.5yt−1 + εt, with εt ∼ N(0, 1) and the nominal size is 5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.009 0.049 0.102 0.204 0.309 0.405 0.507 0.606 0.706 0.803 0.903 0.950 0.986
std (0.014) (0.033) (0.045) (0.066) (0.082) (0.088) (0.089) (0.087) (0.080) (0.068) (0.051) (0.037) (0.024)
σ̄∗
αi

0.015 0.034 0.050 0.071 0.085 0.093 0.096 0.094 0.088 0.077 0.060 0.049 0.034
size 0.058 0.031 0.027 0.026 0.035 0.023 0.027 0.021 0.026 0.019 0.017 0.007 0.024

100
α̂i 0.009 0.050 0.101 0.202 0.304 0.403 0.501 0.600 0.703 0.801 0.901 0.951 0.989
std (0.009) (0.022) (0.032) (0.044) (0.054) (0.058) (0.061) (0.057) (0.051) (0.043) (0.031) (0.023) (0.013)
σ̄∗
αi

0.010 0.023 0.033 0.048 0.057 0.062 0.064 0.062 0.057 0.049 0.037 0.028 0.018
size 0.042 0.032 0.041 0.031 0.036 0.028 0.034 0.031 0.023 0.025 0.016 0.016 0.009

300
α̂i 0.009 0.050 0.100 0.201 0.300 0.400 0.500 0.599 0.699 0.799 0.899 0.949 0.988
std (0.005) (0.012) (0.017) (0.025) (0.029) (0.031) (0.032) (0.031) (0.028) (0.023) (0.016) (0.011) (0.006)
σ̄∗
αi

0.006 0.013 0.018 0.026 0.031 0.033 0.034 0.033 0.030 0.025 0.018 0.013 0.008
size 0.019 0.036 0.039 0.035 0.033 0.028 0.031 0.030 0.031 0.031 0.014 0.018 0.026

1000
α̂i 0.010 0.050 0.100 0.200 0.299 0.399 0.500 0.599 0.699 0.799 0.898 0.949 0.988
std (0.003) (0.007) (0.010) (0.014) (0.017) (0.017) (0.018) (0.017) (0.015) (0.012) (0.008) (0.006) (0.003)
σ̄∗
αi

0.003 0.007 0.010 0.014 0.016 0.017 0.018 0.017 0.015 0.013 0.009 0.006 0.003
size 0.050 0.049 0.048 0.046 0.049 0.049 0.044 0.050 0.049 0.041 0.038 0.038 0.065

5000
α̂i 0.010 0.050 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.799 0.900 0.950 0.989
std (0.001) (0.003) (0.004) (0.006) (0.007) (0.008) (0.008) (0.007) (0.006) (0.005) (0.004) (0.002) (0.001)
σ̄∗
αi

0.001 0.003 0.004 0.006 0.007 0.008 0.008 0.007 0.007 0.005 0.003 0.002 0.001
size 0.044 0.070 0.052 0.046 0.048 0.054 0.052 0.055 0.039 0.057 0.052 0.044 0.127
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Table 2: Monte Carlo size results for t1,αi
. The DGP is yt = 0.95yt−1 + εt, with εt ∼ χ2

(5) and the nominal size is 5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.015 0.058 0.109 0.209 0.307 0.407 0.504 0.603 0.705 0.804 0.901 0.950 0.984
std (0.022) (0.048) (0.067) (0.089) (0.098) (0.102) (0.097) (0.094) (0.081) (0.064) (0.043) (0.034) (0.023)
σ̄∗
αi

0.022 0.049 0.068 0.090 0.100 0.103 0.101 0.095 0.086 0.072 0.054 0.045 0.032
size 0.061 0.046 0.026 0.022 0.015 0.023 0.016 0.025 0.013 0.012 0.001 0.004 0.009

100
α̂i 0.012 0.055 0.106 0.205 0.305 0.406 0.503 0.602 0.702 0.803 0.900 0.949 0.989
std (0.014) (0.032) (0.045) (0.060) (0.064) (0.067) (0.062) (0.057) (0.049) (0.038) (0.027) (0.020) (0.012)
σ̄∗
αi

0.015 0.033 0.046 0.060 0.066 0.067 0.065 0.060 0.053 0.043 0.032 0.025 0.018
size 0.060 0.037 0.029 0.025 0.021 0.025 0.014 0.012 0.014 0.014 0.008 0.005 0.000

300
α̂i 0.011 0.052 0.102 0.202 0.303 0.402 0.502 0.601 0.701 0.800 0.899 0.949 0.988
std (0.007) (0.017) (0.024) (0.030) (0.033) (0.032) (0.032) (0.028) (0.024) (0.018) (0.013) (0.009) (0.006)
σ̄∗
αi

0.008 0.017 0.024 0.031 0.034 0.034 0.032 0.030 0.026 0.020 0.014 0.011 0.007
size 0.044 0.036 0.033 0.039 0.034 0.022 0.032 0.024 0.031 0.017 0.026 0.018 0.011

1000
α̂i 0.011 0.051 0.101 0.201 0.301 0.401 0.501 0.600 0.700 0.800 0.899 0.949 0.988
std (0.004) (0.009) (0.012) (0.016) (0.017) (0.017) (0.016) (0.015) (0.012) (0.009) (0.006) (0.004) (0.003)
σ̄∗
αi

0.004 0.009 0.012 0.016 0.017 0.017 0.016 0.015 0.012 0.010 0.007 0.005 0.003
size 0.054 0.048 0.046 0.051 0.039 0.040 0.042 0.048 0.045 0.034 0.037 0.043 0.101

5000
α̂i 0.010 0.050 0.101 0.200 0.300 0.400 0.500 0.600 0.700 0.799 0.900 0.950 0.989
std (0.002) (0.004) (0.005) (0.007) (0.008) (0.007) (0.007) (0.006) (0.005) (0.004) (0.002) (0.002) (0.001)
σ̄∗
αi

0.002 0.004 0.005 0.007 0.007 0.007 0.007 0.006 0.005 0.004 0.002 0.002 0.001
size 0.049 0.063 0.055 0.046 0.054 0.039 0.049 0.046 0.051 0.044 0.051 0.056 0.162
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Table 3: Monte Carlo size results for L5
αi

and C1 statistics. The DGPs are: yt = 0.5yt−1 + εt, εt ∼ N(0, 1) (Panel A) and yt = 0.95yt−1 + εt,
εt ∼ χ2

(5) (Panel B). The nominal size is 5%.

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

T Panel A

50 0.078 0.066 0.055 0.052 0.047 0.034 0.049 0.044 0.068 0.089 0.089 0.137 0.076 0.025
100 0.048 0.065 0.056 0.047 0.040 0.042 0.051 0.056 0.055 0.058 0.074 0.108 0.049 0.023
300 0.057 0.048 0.053 0.044 0.041 0.040 0.040 0.051 0.056 0.048 0.067 0.091 0.073 0.029
1000 0.050 0.051 0.047 0.045 0.042 0.042 0.049 0.048 0.051 0.046 0.062 0.061 0.179 0.054
5000 0.062 0.060 0.051 0.042 0.042 0.046 0.061 0.043 0.044 0.054 0.060 0.052 0.101 0.092

Panel B

50 0.121 0.091 0.073 0.043 0.036 0.033 0.048 0.059 0.064 0.063 0.081 0.107 0.058 0.023
100 0.098 0.065 0.053 0.045 0.038 0.041 0.054 0.048 0.051 0.038 0.091 0.115 0.027 0.008
300 0.083 0.051 0.057 0.032 0.047 0.045 0.041 0.040 0.036 0.050 0.060 0.095 0.075 0.023
1000 0.070 0.053 0.053 0.058 0.056 0.055 0.047 0.051 0.053 0.051 0.058 0.070 0.193 0.060
5000 0.063 0.051 0.051 0.048 0.043 0.044 0.044 0.034 0.050 0.062 0.051 0.048 0.120 0.089
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Table 4: Monte Carlo power results for t1,αi
. The DGP is the AR(2) model in (17) with εt ∼ N(0, 1). The nominal size is 5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.000 0.001 0.006 0.035 0.095 0.184 0.294 0.420 0.553 0.693 0.833 0.902 0.953
std (0.000) (0.005) (0.012) (0.029) (0.042) (0.050) (0.052) (0.055) (0.053) (0.049) (0.040) (0.031) (0.021)
σ̄∗
αi

0.017 0.041 0.060 0.085 0.100 0.109 0.112 0.109 0.100 0.085 0.063 0.049 0.032
power 0.000 0.000 0.084 0.491 0.588 0.534 0.389 0.227 0.110 0.069 0.050 0.046 0.116

100
α̂i 0.000 0.002 0.008 0.044 0.111 0.205 0.320 0.446 0.577 0.712 0.848 0.916 0.970
std (0.001) (0.004) (0.010) (0.022) (0.030) (0.035) (0.038) (0.037) (0.035) (0.032) (0.025) (0.020) (0.014)
σ̄∗
αi

0.011 0.027 0.040 0.058 0.068 0.074 0.075 0.073 0.067 0.056 0.041 0.031 0.019
power 0.000 0.268 0.830 0.947 0.961 0.925 0.831 0.636 0.354 0.195 0.080 0.075 0.060

300
α̂i 0.000 0.002 0.011 0.054 0.128 0.228 0.344 0.469 0.600 0.731 0.861 0.926 0.979
std (0.000) (0.003) (0.006) (0.013) (0.018) (0.020) (0.022) (0.020) (0.019) (0.018) (0.013) (0.011) (0.007)
σ̄∗
αi

0.006 0.014 0.021 0.029 0.034 0.037 0.038 0.036 0.033 0.027 0.019 0.014 0.008
power 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.869 0.544 0.360 0.227

1000
α̂i 0.000 0.002 0.012 0.058 0.135 0.237 0.355 0.479 0.609 0.739 0.866 0.930 0.982
std (0.000) (0.002) (0.004) (0.008) (0.010) (0.011) (0.011) (0.011) (0.011) (0.009) (0.007) (0.006) (0.003)
σ̄∗
αi

0.003 0.007 0.011 0.015 0.017 0.018 0.018 0.018 0.016 0.013 0.009 0.006 0.003
power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.948 0.652

5000
α̂i 0.000 0.002 0.013 0.060 0.138 0.240 0.358 0.484 0.612 0.741 0.868 0.932 0.983
std (0.000) (0.001) (0.002) (0.003) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.003) (0.002) (0.001)
σ̄∗
αi

0.001 0.003 0.005 0.006 0.007 0.008 0.008 0.007 0.007 0.005 0.004 0.002 0.001
power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
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Table 5: Monte Carlo power results for t1,αi
. The DGP is the AR(1) model with break in the mean in (18) with εt ∼ N(0, 1). The nominal size is

5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.001 0.014 0.040 0.103 0.176 0.264 0.359 0.462 0.577 0.701 0.830 0.897 0.948
std (0.005) (0.016) (0.026) (0.041) (0.049) (0.055) (0.059) (0.059) (0.060) (0.052) (0.045) (0.038) (0.027)
σ̄∗
αi

0.016 0.037 0.053 0.076 0.090 0.099 0.102 0.099 0.092 0.079 0.061 0.049 0.033
power 0.000 0.000 0.041 0.105 0.131 0.144 0.137 0.145 0.142 0.090 0.098 0.080 0.163

100
α̂i 0.002 0.017 0.043 0.109 0.184 0.273 0.372 0.477 0.589 0.712 0.840 0.909 0.967
std (0.004) (0.013) (0.019) (0.027) (0.033) (0.039) (0.042) (0.041) (0.039) (0.036) (0.029) (0.026) (0.017)
σ̄∗
αi

0.010 0.024 0.035 0.050 0.059 0.064 0.065 0.063 0.058 0.050 0.037 0.029 0.018
power 0.001 0.107 0.284 0.417 0.488 0.516 0.486 0.460 0.441 0.374 0.258 0.212 0.136

300
α̂i 0.002 0.018 0.046 0.114 0.193 0.283 0.381 0.485 0.599 0.719 0.849 0.917 0.976
std (0.003) (0.007) (0.011) (0.016) (0.020) (0.022) (0.024) (0.025) (0.024) (0.021) (0.018) (0.014) (0.008)
σ̄∗
αi

0.006 0.013 0.019 0.027 0.032 0.034 0.035 0.033 0.030 0.025 0.018 0.013 0.008
power 0.000 0.785 0.927 0.985 0.989 0.994 0.995 0.994 0.986 0.969 0.874 0.716 0.421

1000
α̂i 0.002 0.019 0.047 0.116 0.196 0.287 0.385 0.490 0.604 0.724 0.851 0.920 0.979
std (0.002) (0.004) (0.006) (0.009) (0.011) (0.012) (0.013) (0.013) (0.013) (0.012) (0.009) (0.008) (0.004)
σ̄∗
αi

0.003 0.007 0.010 0.014 0.017 0.018 0.018 0.017 0.015 0.013 0.009 0.006 0.003
power 0.824 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.911

5000
α̂i 0.003 0.019 0.047 0.116 0.197 0.287 0.387 0.491 0.604 0.724 0.853 0.921 0.980
std (0.001) (0.002) (0.003) (0.004) (0.005) (0.005) (0.006) (0.006) (0.006) (0.005) (0.004) (0.003) (0.002)
σ̄∗
αi

0.001 0.003 0.004 0.006 0.007 0.008 0.008 0.007 0.007 0.005 0.004 0.002 0.001
power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

41



Table 6: Monte Carlo power results for t1,αi
. The DGP is the AR(1)-GARCH(1,1) model in (19) with εt ∼ N(0, 1). The nominal size is 5%.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.018 0.063 0.111 0.209 0.312 0.418 0.522 0.622 0.719 0.815 0.908 0.953 0.991
std (0.019) (0.039) (0.056) (0.078) (0.089) (0.096) (0.093) (0.086) (0.077) (0.061) (0.041) (0.031) (0.019)
σ̄∗
αi

0.014 0.035 0.054 0.079 0.094 0.103 0.104 0.100 0.090 0.075 0.057 0.047 0.033
power 0.204 0.073 0.048 0.034 0.022 0.025 0.019 0.012 0.014 0.010 0.006 0.006 0.009

100
α̂i 0.021 0.066 0.112 0.207 0.308 0.413 0.517 0.620 0.718 0.816 0.909 0.953 0.990
std (0.014) (0.029) (0.043) (0.061) (0.071) (0.075) (0.072) (0.064) (0.050) (0.038) (0.026) (0.018) (0.011)
σ̄∗
αi

0.010 0.025 0.039 0.058 0.069 0.074 0.074 0.069 0.060 0.047 0.033 0.025 0.018
power 0.321 0.132 0.067 0.043 0.051 0.035 0.028 0.027 0.017 0.015 0.009 0.004 0.002

300
α̂i 0.023 0.066 0.112 0.206 0.306 0.410 0.516 0.618 0.718 0.816 0.908 0.953 0.989
std (0.009) (0.022) (0.031) (0.041) (0.046) (0.048) (0.045) (0.039) (0.031) (0.021) (0.012) (0.008) (0.005)
σ̄∗
αi

0.006 0.015 0.024 0.035 0.042 0.045 0.044 0.041 0.034 0.025 0.015 0.011 0.007
power 0.542 0.232 0.094 0.052 0.045 0.044 0.038 0.043 0.040 0.051 0.031 0.006 0.006

1000
α̂i 0.024 0.066 0.111 0.204 0.303 0.408 0.514 0.616 0.717 0.814 0.908 0.953 0.989
std (0.006) (0.011) (0.016) (0.023) (0.026) (0.027) (0.026) (0.021) (0.017) (0.012) (0.006) (0.004) (0.002)
σ̄∗
αi

0.003 0.008 0.013 0.020 0.024 0.026 0.025 0.023 0.019 0.013 0.007 0.005 0.003
power 0.929 0.494 0.152 0.061 0.048 0.051 0.066 0.070 0.105 0.159 0.145 0.070 0.031

5000
α̂i 0.024 0.066 0.110 0.202 0.302 0.406 0.512 0.615 0.716 0.814 0.908 0.954 0.989
std (0.003) (0.007) (0.010) (0.014) (0.016) (0.017) (0.016) (0.015) (0.012) (0.007) (0.003) (0.002) (0.001)
σ̄∗
αi

0.001 0.004 0.006 0.010 0.011 0.012 0.012 0.011 0.009 0.006 0.003 0.002 0.001
power 0.999 0.925 0.419 0.119 0.098 0.113 0.197 0.330 0.482 0.692 0.724 0.476 0.110
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Table 7: Monte Carlo power results for L5
αi

and C1 statistics. The DGPs are: the AR(2) model in (17) (Panel A), the AR(1) model with break in
the mean in (18) (Panel B) and the AR(1)-GARCH(1,1) in (19) (Panel C). The nominal size is 5%.

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

T Panel A

50 0.009 0.057 0.249 0.643 0.774 0.796 0.793 0.720 0.582 0.417 0.281 0.310 0.228 0.058
100 0.027 0.299 0.723 0.939 0.975 0.976 0.968 0.934 0.854 0.678 0.475 0.331 0.179 0.441
300 0.343 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.851 0.632 0.317 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.980 0.638 1.000
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000

Panel B

50 0.000 0.006 0.019 0.063 0.121 0.155 0.205 0.257 0.269 0.280 0.257 0.300 0.240 0.054
100 0.002 0.014 0.047 0.131 0.256 0.292 0.326 0.362 0.379 0.375 0.391 0.404 0.186 0.166
300 0.004 0.339 0.586 0.789 0.869 0.891 0.900 0.891 0.879 0.839 0.726 0.591 0.276 0.855
1000 0.743 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.676 1.000
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel C

50 0.177 0.093 0.064 0.054 0.041 0.040 0.045 0.031 0.055 0.085 0.122 0.180 0.052 0.059
100 0.301 0.104 0.076 0.065 0.051 0.050 0.055 0.057 0.056 0.095 0.207 0.279 0.061 0.107
300 0.589 0.175 0.071 0.064 0.061 0.063 0.074 0.084 0.088 0.143 0.282 0.473 0.314 0.381
1000 0.935 0.366 0.144 0.090 0.088 0.091 0.106 0.161 0.238 0.331 0.520 0.653 0.886 0.907
5000 0.999 0.875 0.345 0.166 0.154 0.187 0.332 0.557 0.770 0.890 0.940 0.941 0.972 1.000
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Table 8: Monte Carlo size results for out-of-sample t1,αi
. The DGP is yt = 0.95yt−1 + εt with εt ∼ N(0, 1). The nominal size is 5% and H = 50.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.015 0.061 0.112 0.213 0.313 0.409 0.508 0.602 0.699 0.794 0.891 0.935 0.968
std (0.033) (0.064) (0.085) (0.117) (0.133) (0.146) (0.152) (0.150) (0.142) (0.123) (0.095) (0.072) (0.050)
σ̄∗
αi

0.032 0.065 0.088 0.117 0.135 0.144 0.148 0.146 0.138 0.123 0.096 0.076 0.052
size 0.045 0.058 0.058 0.064 0.071 0.080 0.072 0.084 0.083 0.057 0.053 0.052 0.075

100
α̂i 0.013 0.058 0.109 0.209 0.305 0.404 0.502 0.600 0.697 0.795 0.893 0.940 0.980
std (0.021) (0.048) (0.069) (0.093) (0.112) (0.121) (0.124) (0.121) (0.115) (0.104) (0.077) (0.059) (0.033)
σ̄∗
αi

0.022 0.050 0.071 0.098 0.114 0.123 0.127 0.126 0.118 0.104 0.079 0.060 0.036
size 0.049 0.052 0.050 0.050 0.060 0.060 0.061 0.053 0.049 0.048 0.044 0.059 0.070

300
α̂i 0.011 0.054 0.105 0.209 0.310 0.408 0.510 0.608 0.705 0.804 0.899 0.949 0.986
std (0.016) (0.041) (0.055) (0.082) (0.100) (0.109) (0.111) (0.109) (0.103) (0.088) (0.067) (0.049) (0.026)
σ̄∗
αi

0.017 0.040 0.058 0.081 0.096 0.104 0.108 0.106 0.100 0.088 0.067 0.049 0.026
size 0.038 0.048 0.034 0.055 0.063 0.058 0.066 0.053 0.050 0.038 0.040 0.050 0.056

1000
α̂i 0.011 0.051 0.103 0.205 0.304 0.404 0.501 0.600 0.700 0.800 0.897 0.949 0.987
std (0.016) (0.037) (0.055) (0.075) (0.090) (0.097) (0.100) (0.100) (0.094) (0.083) (0.063) (0.046) (0.023)
σ̄∗
αi

0.016 0.037 0.054 0.075 0.088 0.096 0.100 0.099 0.093 0.082 0.062 0.046 0.023
size 0.070 0.045 0.049 0.045 0.055 0.049 0.051 0.054 0.046 0.053 0.041 0.041 0.049

5000
α̂i 0.010 0.050 0.099 0.202 0.300 0.398 0.502 0.603 0.701 0.800 0.896 0.947 0.987
std (0.014) (0.035) (0.051) (0.072) (0.085) (0.093) (0.097) (0.097) (0.090) (0.078) (0.058) (0.043) (0.023)
σ̄∗
αi

0.016 0.037 0.052 0.073 0.086 0.094 0.097 0.096 0.091 0.080 0.060 0.044 0.021
size 0.050 0.043 0.043 0.036 0.048 0.051 0.053 0.057 0.044 0.052 0.025 0.032 0.048
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Table 9: Monte Carlo size results for out-of-sample L5
αi

and C1 statistics. The DGP is yt = 0.95yt−1+ εt with εt ∼ N(0, 1). The nominal size is 5%,
H = 50 (Panel A) and H = 500 (Panel B).

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

T Panel A

50 0.116 0.113 0.096 0.083 0.070 0.072 0.090 0.091 0.108 0.108 0.121 0.117 0.147 0.086
100 0.100 0.075 0.084 0.050 0.039 0.051 0.062 0.080 0.107 0.105 0.116 0.136 0.094 0.078
300 0.120 0.080 0.068 0.059 0.066 0.073 0.069 0.070 0.077 0.091 0.118 0.139 0.087 0.071
1000 0.124 0.081 0.075 0.072 0.067 0.063 0.079 0.075 0.090 0.103 0.126 0.151 0.074 0.079
5000 0.093 0.077 0.054 0.058 0.053 0.062 0.063 0.062 0.073 0.079 0.116 0.161 0.090 0.064

Panel B

50 0.119 0.092 0.088 0.087 0.082 0.087 0.085 0.070 0.076 0.084 0.093 0.107 0.107 0.057
100 0.100 0.076 0.079 0.066 0.078 0.067 0.065 0.060 0.073 0.074 0.102 0.111 0.115 0.047
300 0.094 0.069 0.070 0.057 0.056 0.052 0.066 0.059 0.066 0.059 0.081 0.102 0.197 0.062
1000 0.074 0.063 0.059 0.055 0.060 0.059 0.065 0.056 0.075 0.068 0.081 0.090 0.164 0.065
5000 0.056 0.054 0.049 0.058 0.047 0.058 0.057 0.053 0.053 0.051 0.077 0.113 0.127 0.050
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Table 10: Monte Carlo power results for out-of-sample t1,αi
. The DGP is the AR(2) model in (17) with εt ∼ N(0, 1). The nominal size is 5% and

H = 500.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.000 0.002 0.008 0.038 0.100 0.193 0.305 0.430 0.559 0.692 0.829 0.898 0.948
std (0.001) (0.003) (0.008) (0.021) (0.038) (0.059) (0.079) (0.095) (0.102) (0.098) (0.083) (0.068) (0.049)
σ̄∗
αi

0.024 0.043 0.056 0.069 0.077 0.083 0.086 0.086 0.084 0.078 0.064 0.051 0.036
power 0.000 0.030 0.450 0.764 0.809 0.745 0.653 0.526 0.418 0.327 0.234 0.212 0.211

100
α̂i 0.000 0.002 0.010 0.047 0.115 0.211 0.324 0.449 0.579 0.711 0.845 0.914 0.967
std (0.000) (0.003) (0.007) (0.019) (0.032) (0.047) (0.059) (0.069) (0.076) (0.073) (0.060) (0.047) (0.030)
σ̄∗
αi

0.012 0.026 0.037 0.049 0.056 0.061 0.064 0.064 0.063 0.057 0.045 0.035 0.021
power 0.000 0.415 0.874 0.956 0.952 0.898 0.795 0.644 0.482 0.353 0.261 0.226 0.196

300
α̂i 0.000 0.002 0.011 0.055 0.129 0.229 0.344 0.469 0.599 0.730 0.859 0.925 0.978
std (0.000) (0.002) (0.006) (0.015) (0.023) (0.033) (0.040) (0.046) (0.049) (0.047) (0.038) (0.028) (0.015)
σ̄∗
αi

0.007 0.016 0.023 0.032 0.038 0.042 0.044 0.044 0.043 0.038 0.029 0.022 0.012
power 0.000 0.999 1.000 1.000 1.000 0.991 0.951 0.832 0.665 0.444 0.310 0.244 0.194

1000
α̂i 0.000 0.002 0.012 0.058 0.134 0.237 0.355 0.482 0.610 0.739 0.866 0.930 0.982
std (0.000) (0.002) (0.006) (0.012) (0.019) (0.026) (0.033) (0.038) (0.039) (0.036) (0.029) (0.022) (0.011)
σ̄∗
αi

0.005 0.013 0.018 0.026 0.031 0.034 0.035 0.035 0.033 0.029 0.023 0.017 0.008
power 0.149 1.000 1.000 1.000 1.000 1.000 0.985 0.898 0.736 0.521 0.349 0.258 0.205

5000
α̂i 0.000 0.002 0.012 0.059 0.139 0.239 0.358 0.484 0.614 0.741 0.869 0.933 0.985
std (0.000) (0.002) (0.005) (0.012) (0.018) (0.023) (0.028) (0.033) (0.033) (0.030) (0.025) (0.018) (0.009)
σ̄∗
αi

0.005 0.012 0.017 0.023 0.028 0.030 0.031 0.031 0.029 0.026 0.020 0.014 0.007
power 0.813 1.000 1.000 1.000 1.000 1.000 1.000 0.961 0.802 0.608 0.385 0.246 0.187
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Table 11: Monte Carlo power results for out-of-sample t1,αi
. The DGP is the AR(1)-GARCH(1,1) model in (19) with εt ∼ N(0, 1). The nominal

size is 5% and H = 500.

T αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
50

α̂i 0.030 0.070 0.115 0.213 0.323 0.432 0.537 0.630 0.718 0.800 0.875 0.912 0.943
std (0.022) (0.036) (0.047) (0.063) (0.082) (0.098) (0.109) (0.114) (0.110) (0.100) (0.083) (0.069) (0.054)
σ̄∗
αi

0.011 0.027 0.038 0.053 0.062 0.068 0.070 0.071 0.069 0.064 0.053 0.044 0.033
power 0.388 0.183 0.119 0.090 0.118 0.148 0.198 0.219 0.243 0.248 0.193 0.228 0.289

100
α̂i 0.028 0.069 0.114 0.210 0.314 0.421 0.525 0.625 0.719 0.808 0.889 0.929 0.963
std (0.019) (0.030) (0.039) (0.053) (0.064) (0.079) (0.087) (0.091) (0.090) (0.084) (0.068) (0.054) (0.037)
σ̄∗
αi

0.009 0.021 0.032 0.045 0.052 0.057 0.058 0.057 0.054 0.049 0.040 0.031 0.020
power 0.464 0.228 0.128 0.059 0.078 0.143 0.180 0.213 0.246 0.280 0.263 0.209 0.290

300
α̂i 0.026 0.067 0.113 0.207 0.308 0.413 0.519 0.619 0.718 0.811 0.899 0.943 0.977
std (0.015) (0.025) (0.032) (0.040) (0.048) (0.058) (0.066) (0.069) (0.069) (0.065) (0.052) (0.040) (0.024)
σ̄∗
αi

0.006 0.016 0.024 0.034 0.040 0.044 0.045 0.043 0.040 0.035 0.027 0.021 0.011
power 0.551 0.281 0.135 0.066 0.065 0.120 0.169 0.214 0.265 0.305 0.314 0.300 0.271

1000
α̂i 0.025 0.067 0.112 0.205 0.305 0.410 0.515 0.617 0.716 0.813 0.905 0.950 0.985
std (0.012) (0.019) (0.024) (0.030) (0.035) (0.041) (0.046) (0.049) (0.051) (0.049) (0.040) (0.031) (0.017)
σ̄∗
αi

0.005 0.013 0.019 0.028 0.033 0.035 0.036 0.035 0.033 0.029 0.022 0.016 0.008
power 0.587 0.317 0.151 0.059 0.073 0.097 0.127 0.198 0.238 0.286 0.298 0.304 0.206

5000
α̂i 0.024 0.066 0.110 0.202 0.303 0.408 0.513 0.617 0.716 0.814 0.908 0.954 0.989
std (0.012) (0.018) (0.022) (0.026) (0.031) (0.036) (0.041) (0.045) (0.047) (0.045) (0.036) (0.027) (0.013)
σ̄∗
αi

0.005 0.012 0.017 0.024 0.029 0.031 0.032 0.031 0.030 0.026 0.020 0.014 0.007
power 0.632 0.330 0.148 0.065 0.066 0.087 0.133 0.189 0.244 0.302 0.320 0.316 0.124
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Table 12: Monte Carlo power results for out-of-sample L5
αi

and C1 statistics with H = 500. The DGPs are: the AR(2) model with εt ∼ N(0, 1)
(Panel A); and the AR(1)-GARCH(1,1) model with εt ∼ N(0, 1) (Panel B). The nominal size is 5%.

L5
0.01 L5

0.05 L5
0.1 L5

0.2 L5
0.3 L5

0.4 L5
0.5 L5

0.6 L5
0.7 L5

0.8 L5
0.9 L5

0.95 L5
0.99 C13

1

Panel A

50 0.288 0.773 0.978 1.000 1.000 1.000 1.000 1.000 0.987 0.919 0.713 0.521 0.348 0.596
100 0.418 0.928 0.999 1.000 1.000 1.000 1.000 1.000 0.996 0.964 0.751 0.526 0.297 0.728
300 0.565 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.980 0.827 0.573 0.415 0.989
1000 0.691 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.832 0.602 0.385 1.000
5000 0.721 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.845 0.624 0.327 1.000

Panel B

50 0.371 0.150 0.111 0.096 0.122 0.128 0.157 0.189 0.223 0.259 0.377 0.448 0.528 0.385
100 0.445 0.185 0.122 0.087 0.092 0.118 0.153 0.186 0.242 0.297 0.378 0.500 0.558 0.495
300 0.525 0.242 0.110 0.088 0.095 0.108 0.132 0.164 0.252 0.341 0.441 0.491 0.599 0.569
1000 0.569 0.238 0.126 0.077 0.071 0.078 0.097 0.170 0.239 0.360 0.479 0.500 0.503 0.573
5000 0.602 0.277 0.115 0.064 0.071 0.079 0.113 0.161 0.231 0.322 0.484 0.551 0.412 0.600
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Table 13: Descriptive statistics

The first column corresponds to the summary statistics of the log-VIX series and the second
and third to the residuals obtained with the HAR and HAR-GARCH models, respectively.
ρk corresponds to the estimated sample autocorrelations of the log-VIX and ρ2k to the
sample correlations of its squares.

Residuals
Sample statistics Full sample HAR HAR-GARCH
Mean 2.953 0.000 0.001
Standard deviation 0.348 0.060 0.060
Skewness 0.539 0.915 0.946

(0.000) (0.000) (0.000)

Kurtosis 3.288 7.481 7.523
(0.000) (0.000) (0.000)

Jarque-Bera 300.7 5605.8 5749.0
(0.000) (0.001) (0.001)

ρ1 0.985 0.001 0.007
(0.000) (0.940) (0.584)

ρ10 0.916 0.052 0.044
(0.000) (0.016) (0.057)

ρ100 0.616 -0.002 0.014
(0.000) (0.000) (0.000)

ρ21 0.984 0.122 -0.003
(0.000) (0.000) (0.830)

ρ210 0.914 0.129 0.025
(0.000) (0.000) (0.285)

ρ2100 0.582 -0.011 0.011
(0.000) (0.000) (0.864)
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Table 14: Estimation results for the log-VIX index. t-statistics in parenthesis.

HAR HAR-GARCH HAR-GJR
Mean equation

φ̂0 0.024 0.029 0.027
(3.325) (4.369) (4.025)

φ̂1 0.873 0.883 0.887
(64.422) (65.136) (62.800)

φ̂5 -0.002 -0.009 -0.016
(-0.058) (-0.344) (-0.603)

φ̂10 0.133 0.108 0.113
(4.510) (3.605) (3.834)

φ̂22 -0.030 -0.013 -0.015
(-1.556) (-0.710) (-0.782)

φ̂66 0.016 0.022 0.021
(2.070) (2.799) (2.746)

Variance equation
ω̂ 2.784e-05 3.259e-04

(11.057) (12.826)

α̂ 0.088 0.127
(14.384) (13.211)

β̂ 0.834 0.834
(71.694) (70.577)

λ̂ -0.127
(-11.324)
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Table 15: Testing the models in-sample

The sample period runs from January 2, 1990 to January 15, 2003, including altogether 5807 observations. Panels A, C and E shows the tests obtained by the
bootstrap procedure described in Section 3 and panels B, D and F presents the tests obtained by the procedure of González-Rivera and Sun (2015), where the
errors are assumed to be Gaussian and the variance of the tests is computed by bootstrap. *, **, *** indicate that H0 is rejected at 10%, 5% and 1% levels of
significance, respectively.

HAR model

αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
Panel A

α̂i 0.009 0.052 0.105 0.203 0.309 0.412 0.512 0.610 0.705 0.803 0.899 0.950 0.989
|t1,αi

| |0.51| |1.16| |1.71|∗ |0.96| |2.79|∗∗∗ |3.71|∗∗∗ |4.08|∗∗∗ |3.86|∗∗∗ |2.31|∗∗ |1.42| |0.61| |0.15| |0.97|
L

5
αi

5.85 3.03 6.24 5.27 11.67∗∗ 18.51∗∗∗ 21.978∗∗∗ 16.84∗∗∗ 9.92∗ 4.83 11.34∗∗ 12.66∗∗ 26.26∗∗∗

C
13
1 31.817∗∗∗

Panel B
α̂i 0.005 0.037 0.093 0.228 0.367 0.489 0.596 0.684 0.764 0.837 0.895 0.927 0.969
|t1,αi

| |3.93|∗∗∗ |5.02|∗∗∗ |2.08|∗∗ |6.30|∗∗∗ |12.69|∗∗∗ |16.98|∗∗∗ |17.85|∗∗∗ |16.02|∗∗∗ |13.51|∗∗∗ |7.87|∗∗∗ |1.21| |7.56|∗∗∗ |12.54|
L

5
αi

30.30∗∗∗ 73.09∗∗∗ 23.12∗∗∗ 51.01∗∗∗ 193.75∗∗∗ 321.82∗∗∗ 343.19∗∗∗ 284.29∗∗∗ 201.29∗∗∗ 71.28∗∗∗ 7.22 66.05∗∗∗ 198.36∗∗∗

C
13
1 881.66∗∗∗

HAR-GARCH model

Panel C
α̂i 0.008 0.049 0.102 0.205 0.311 0.408 0.509 0.611 0.703 0.800 0.899 0.950 0.990
|t1,αi

| |1.85|∗ |0.23| |0.74| |1.45| |2.95|∗∗ |2.29|∗∗ |2.58|∗∗ |3.45|∗∗ |1.30| |0.18| |0.35| |0.16| |0.13|
L

5
αi

8.90 4.30 6.09 7.15 12.80∗∗ 8.31 9.92∗ 16.25∗∗∗ 5.12 2.93 8.90 7.08 5.85
C

13
1 22.86∗∗

Panel D
α̂i 0.003 0.037 0.099 0.234 0.363 0.480 0.577 0.666 0.749 0.818 0.893 0.930 0.971
|t1,αi

| |5.41|∗∗∗ |4.91|∗∗∗ |0.26| |7.44|∗∗∗ |11.79|∗∗∗ |14.05|∗∗∗ |12.88|∗∗∗ |11.15|∗∗∗ |8.93|∗∗∗ |3.62|∗∗∗ |1.77|∗ |6.37|∗∗∗ |10.70|∗∗∗

L
5
αi

69.56∗∗∗ 51.28∗∗∗ 8.86 68.17∗∗∗ 152.47∗∗∗ 206.97∗∗∗ 186.68∗∗∗ 147.90∗∗∗ 89.45∗∗∗ 17.17∗∗∗ 10.74∗ 53.39∗∗∗ 142.98∗∗∗

C
13
1 369.90∗∗∗

HAR-GJR model

αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
Panel E

α̂i 0.008 0.052 0.104 0.206 0.308 0.404 0.508 0.604 0.698 0.801 0.900 0.949 0.988
|t1,αi

| |1.579| |0.723| |1.209| |1.567| |1.987|∗∗ |1.061| |2.186|∗∗ |1.174| |0.596| |0.545| |0.207| |0.485| |1.580|
L

5
αi

5.893 4.194 5.584 6.224 10.133∗ 5.364 7.529 3.404 1.785 7.246 7.072 5.732 6.419
C

13
1 17.574

Panel F
α̂i 0.005 0.042 0.102 0.236 0.363 0.475 0.576 0.666 0.742 0.812 0.892 0.930 0.970
|t1,αi

| |4.589|∗∗∗ |2.991|∗∗∗ |0.594| |7.265|∗∗∗ |11.343|∗∗∗ |12.749|∗∗∗ |12.518|∗∗∗ |11.466|∗∗∗ |7.590|∗∗∗ |2.415|∗∗ |1.974|∗∗ |6.464|∗∗ |10.775|∗∗

L
5
αi

56.361∗∗∗ 28.913∗∗∗ 4.768 63.059∗∗∗ 144.393∗∗∗ 176.729∗∗∗ 179.438∗∗∗ 143.983∗∗∗ 69.193∗∗∗ 12.108∗∗ 9.264∗ 54.380∗∗∗ 131.270∗∗∗

C
13
1 318.896∗∗∗
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Table 16: Estimation results for the VIX index. t-statistics in parenthesis

MEM model:

Vt = µtεt; εt ∼ GSNP2(ν, ψ, δ),

µt = ςt + st,

ςt = ω + ρςt−1 + ψ(Vt−1 − µt−1),

st = (α+ β)st−1 + α(Vt−1 − µt−1).

α 0.372 (12.241)

β 0.374 (13.525)

ω 0.041 (3.140)

ρ 0.998 (1018.510)

ψ 0.519 (17.025)

∆ 5.429 (36.965)

ν 115.455 (28.319)

θ1 0.019 (28.607)

θ2 3.137 (20811.247)
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Table 17: Testing the models in-sample

The sample period runs from January 2, 1990 to January 15, 2003, including altogether 5807 observations. Panel A shows the tests obtained by the procedure
of González-Rivera and Sun (2015) for the MEM model using the VIX series, where the errors are assumed to have a semi-nonparametric Gamma density as
in Menćıa and Sentana (2016) and the variance of the tests is computed by bootstrap. *, **, *** indicate that H0 is rejected at 10%, 5% and 1% levels of
significance, respectively.

MEM model

αi 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
Panel A

α̂i 0.007 0.046 0.105 0.225 0.342 0.455 0.546 0.636 0.721 0.807 0.898 0.957 0.988
|t1,αi

| |2.577|∗∗∗ |1.502| |1.409| |5.007|∗∗∗ |7.685|∗∗∗ |9.246|∗∗∗ |7.095|∗∗∗ |5.486|∗∗∗ |3.389|∗∗∗ |1.249| |0.521| |2.984|∗∗∗ |1.331|
L

5
αi

7.847 9.861∗ 7.639 30.765∗∗∗ 62.178∗∗∗ 88.531∗∗∗ 51.379∗∗∗ 32.059∗∗∗ 14.746∗∗ 4.974 4.209 13.124∗∗ 5.097
C

13
1 120.098∗∗∗
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