New Perspectives on Forecasting Inflation in Emerging Market Economies: An Empirical Assessment

Roberto Duncan

Enrique Martínez-García Federal Reserve Bank of Dallas

Forecasting Issues in Developing Economies Washington, DC, April 26-27, 2017

ション ふゆ くち くち しょう くうく

- 1. Introduction
 - Motivation
 - Inflation forecasting has resurged in advanced economies
 - global inflation
 - Ciccarelli and Mojon (2010); Duncan and Martínez-García (2015)
 - surveys of expectations
 - Faust and Wright (2013)
 - A few studies for emerging market economies (EMEs)
 - Limited cross-section and time series dimension
 - Few models; exception: Mandalinci (2015)
 - Some key models are virtually ignored (e.g., RW by Atkeson and Ohanian (2001))

ション ふゆ くち くち しょう くうく

- L_{1. Introduction}
 - What we do

What we do

- A horse race with a broad-range set of specifications to forecast inflation in EMEs
- Discuss the implications of our main finding in an open-economy New Keynesian model

- 1. Introduction
 - What we find

What we find and its importance

- The RW-AO has, in general, a superior predictive power to forecast inflation across EMEs
- If we interpret our findings as deviations from rational expectations coupled with partial credibility, we get sensible theoretical predictions about inflation dynamics.
- The RW-AO is a missing model in the literature for EMEs
- Hammond (2012) reports the list of forecasting models used by inflation targeters: the RW-AO is not one of them.

ション ふゆ くち くち しょう くうく

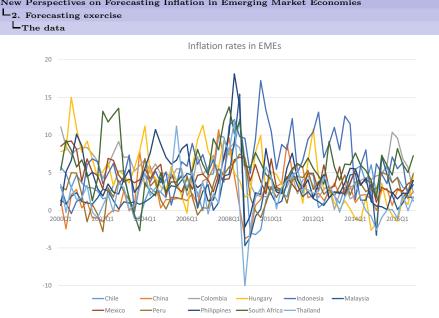
▲□▶ ▲□▶ ▲□▶ ★□▶ □□ の�?

- └1. Introduction
 - Outline

Outline

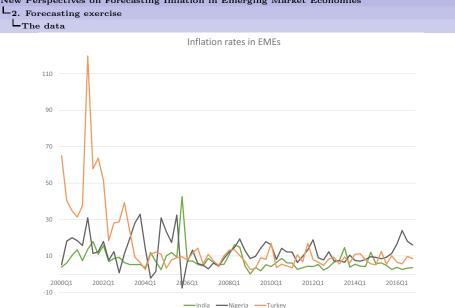
- 1 Introduction
- **2** Forecasting exercise
- 3 Models
- **4** Forecast comparison
- 5 Discussion
- 6 Final remarks

- 2. Forecasting exercise
 - The data


Quarter-on-quarter headline-CPI inflation rates (π_t)

$$\pi_t \equiv 100 \left[\left(\frac{CPI_t}{CPI_{t-1}} \right)^4 - 1 \right]$$

- Seasonally-adjusted, average data, 1980Q1-2016Q4.
- Sample of 14 EMEs: Chile, China, Colombia, Hungary, Indonesia, India, Malaysia, Mexico, Nigeria, Peru, Philippines, South Africa, Thailand, and Turkey.


ション ふゆ くち くち しょう くうく

イロト 不得下 イヨト イヨト 3

▲ロト ▲樹ト ▲ヨト ▲ヨト 三ヨー のへで

- 2. Forecasting exercise
 - The exercise
 - Horse race to forecast inflation, the RW-AO vs competing models

▲□▶ ▲□▶ ▲□▶ ★□▶ □□ の�?

- Pseudo out-of-sample forecasts, recursive estimation
- Forecast horizons: $h = \{1, 4, 8, 12\}$ quarters
- Training sample: 1980Q2-2000Q2

L_{3. Models}

The null model

Random Walk (RW-AO)

$$M_0: \quad \pi_{t+h} = \frac{1}{q} \sum_{i=1}^{q} \pi_{t+1-i} + \epsilon_{t+h}$$

ション ふゆ くち くち しょう くうく

 π_{t+h} : the inflation rate h: forecast horizon ϵ_{t+h} : forecast error q = 4AO = Atkeson and Ohanian (2001), Faust and Wright (2013).

- L_{3. Models}
 - Competing models

We consider

- univariate and multivariate specifications
- frequentist and Bayesian techniques
- constant and time-varying parameter models
- purely statistical and econometric specifications (exchange rates, commodity prices, global inflation via factor components)

ション ふゆ くち くち しょう くうく

Along the lines of: Doan *et al.* (1984), Litterman (1986), Stock and Watson (1999, 2002, 2007), Ciccarelli and Mojon (2010), Faust and Wright (2013), Primiceri (2005), among others.

-3. Models

Competing models

Recursive autoregression, AR(p) model (RAR)

$$M_1: \quad \pi_t = \phi_0 + \Phi(L)\pi_t + \epsilon_t$$

where $\Phi(L) = \phi_1 L + \dots + \phi_p L^p$.

Direct forecast, AR(p) model (DAR, DAR4)

$$M_2, M_3: \pi_{t+h} = \phi_{0,h} + \Phi(L,h)\pi_t + \epsilon_{t+h}$$

where

$$\Phi(L,h) = \phi_{1,h} + \phi_{2,h}L + \dots + \phi_{p,h}L^{p-1} \text{ (for a given } h\text{)},$$

$$p = 2 \ (M_2) \text{ and } p = 4 \ (M_3).$$

L_{3. Models}

Competing models

Factor-Augmented AR(p) model (FAR)

 $M_4: \ \pi_{t+h} = \phi_{0,h} + \Phi(L,h)\pi_t + \Theta(L,h)\widehat{F}_t + \epsilon_{t+h}$

where \widehat{F}_t is a static factor component of the inflation rates of the 14 EMEs plus 18 advanced economies.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

−3. Models

Competing models

Augmented Phillips Curve (APC)

 $M_5: \ \pi_{t+h} = \phi_{0,h} + \Phi(L,h)\pi_t + A(L,h)y_t + B(L,h)e_t + C(L,h)p_t^c + \epsilon_{t+h}$

where

y: industrial production index,

e: real exchange rate,

 p^c : commodity price index (agricultural raw materials, beverages, food, metals and crude oil).

うして ふゆう ふほう ふほう ふしつ

All expressed in percent changes.

L_{3. Models}

Competing models

Bivariate BVAR (BVAR2)

$$M_6: X_{t+h} = \Phi_{0,h} + \Phi(L,h)X_t + \epsilon_{t+h}$$

ション ふゆ くち くち しょう くうく

where

 $X_t = (\pi_t, \hat{F}_t)'$ $\Phi_{0,h}$: vector of parameters $\Phi(L, h)$: matrix of lag polynomials Minnesota priors.

L_{3. Models}

└─Competing models

Multivariate BVAR (BVAR4)

$$M_7: X_{t+h} = \Phi_{0,h} + \Phi(L,h)X_t + \epsilon_{t+h}$$

◆□▶ ◆課▶ ★理▶ ★理▶ = 臣 = の�@

where

 $X_t = (\pi_t, y, e, p^c)'$ Minnesota priors.

-3. Models

Competing models

Bivariate BVAR with commodity prices (BVAR2-COM)

$$M_8: X_{t+h} = \Phi_{0,h} + \Phi(L,h)X_t + \epsilon_{t+h}$$

◆□▶ ◆課▶ ★理▶ ★理▶ = 臣 = の�@

where

 $X_t = (\pi_t, p^c)'$ Minnesota priors.

L_{3. Models}

Competing models

Time Varying Parameter specification (TVP)

$$M_9: \ \pi_{t+h} = \phi_{0h,t} + \phi_{1h,t}\pi_t + \epsilon_{t+h}$$

where $\phi_{0h,t}$ and $\phi_{1h,t}$ follow

$$\phi_{0h,t+h} = \phi_{0h,t} + \nu_{0,t+h}$$
$$\phi_{1h,t+h} = \phi_{1h,t} + \nu_{1,t+h}$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …の�?

and $\nu_{0,t}$ and $\nu_{1,t}$ are i.i.d. shocks.

4. Forecast evaluation

Predictive ability: Relative RMSPE

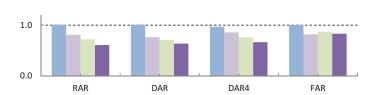
(1) Relative RMSPE

■ The relative RMSPE or Theil-U statistic is

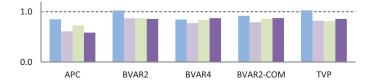
$$Theil - U^{h}_{m,c} = \frac{RMSPE^{h}_{RW-AO,c}}{RMSPE^{h}_{m,c}}$$

for c = 1, 2, ..., 14, m = 1, 2, ..., 9, h = 1, 4, 8, 12.

- If $Theil U_{m,c}^h < 1$, the RW-AO has a lower RMSPE than does the competitive model *m* for country *c* at the forecast horizon *h*
- Statistical significance:
 - Diebold-Mariano-West test + Harvey et al. (1997)


ション ふゆ くち くち しょう くうく

■ Clark and West (2007)


4. Forecast evaluation

Findings

h=1 h=4 h=8 h=12

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

└₄. Forecast evaluation

L_{Findings}

RMSPE of the RW-AO Relative to Competing Models						
	M_4	M_6	M_7	M ₉	Average	
	FAR	BVAR2	BVAR4	TVP	M1-M9	
One-quarter ahead						
Median	1.001	1.027	0.848	1.030	0.962	
#<1	7	6	9	5	8	
#pv<.1	4	4	7	2	5	
Eight-quarter ahead						
Median	0.870	0.871	0.839	0.813	0.797	
#<1	10	13	12	14	12	
#pv<.1	8	9	11	11	10	
Averages (all horizons)						
Median	0.880	0.907	0.834	0.882	0.826	
#<1	9	11	12	12	11	
#pv<.1	7	7	9	8	8	

(ロ)、(国)、(E)、(E)、(E)、(O)へ(C)

└4. Forecast evaluation

Findings

Where is the RW-AO more successful in terms of RMSPE?

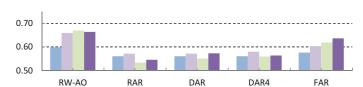
Nun	Number of Statistical Significant Cases (U-Theils; #pv<.1)					
	Average (h=1,4)	Average (h=8,12)	Average (all horizons)			
Mexico	9	9	9			
Peru	8	9	9			
Hungary	7	9	8			
Colombia	8	6	7			
Nigeria	7	7	7			
Indonesia	5	8	6			
Philippines	5	8	6			
Turkey	6	5	6			
Chile	5	5	5			
India	3	5	4			
China	1	6	4			
Thailand	2	3	2			
Malaysia	1	2	1			
South Africa	1	0	0			

◆□▶ ◆課▶ ★理▶ ★理▶ = 臣 = の�@

Number of Statistical Significant Cases (II Theils: #ny < 1)

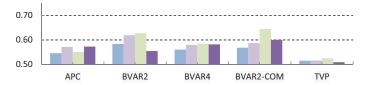
- 4. Forecast evaluation
 - Predictive ability: Success ratios

(2) Success ratio


- An estimate of the probability that a given forecast correctly anticipates the **direction of change in inflation**
- Tossing a fair coin predicts the direction of change correctly 50% of the time
- So a model needs to attain a success ratio greater than 0.5
- Statistical significance: Pesaran and Timmermann (2009).

ション ふゆ くち くち しょう くうく

4. Forecast evaluation


Findings

Success Ratios (Medians)

■ h=1 ■ h=4 ■ h=8 ■ h=12

▲ロト ▲園ト ▲ヨト ▲ヨト 三日 - のへで

└₄. Forecast evaluation

${\sf L}_{\rm Findings}$

Directional Accuracy: Success Ratios						
	M_0	M_4	M ₆	M ₇	M ₉	Average
	RW-AO	FAR	BVAR2	BVAR4	TVP	M1-M9
One-quarter ahead						
Mean	0.615	0.575	0.573	0.540	0.519	0.549
Median	0.598	0.576	0.583	0.561	0.515	0.559
#>0.5	14	12	11	9	8	10
Eight-quarter ahead						
Mean	0.663	0.599	0.611	0.559	0.534	0.564
Median	0.669	0.619	0.627	0.585	0.525	0.577
#>0.5	14	9	12	9	9	9
Averages (all horizons)						
Mean	0.652	0.589	0.583	0.566	0.522	0.564
Median	0.648	0.608	0.596	0.577	0.516	0.571
#>0.5	14	11	12	11	9	10

(ロ)、(国)、(E)、(E)、(E)、(O)へ(C)

- 4. Forecast evaluation
 - Robustness checks

Robustness checks

- $\blacksquare \text{ RW-AO}(q=4) \succ \text{RW-AO}(q=1,6)$
- RW-AO \succ specifications with $\Delta \pi_t$
- \blacksquare ~ with normal-flat priors in BVAR2, BVAR4

ション ふゆ くち くち しょう くうく

- Training sample (1990-2000)
- Forecast combination

└₄. Forecast evaluation

L_{Robustness} checks

	Foreca	st Averages			
	Relativ	e RMSPE	Directional accuracy		
	M1-M9 M4 and M6		M1-M9	M4 and M6	
	Average	Average	Average	Average	
One-quarter ahead					
Mean	0.944	0.920	0.559	0.575	
Median	0.999	1.015	0.561	0.576	
#<1; #>0.5	7	6	10	12	
#pv<.1	3	4	8	8	
Eight-quarter ahead					
Mean	0.783	0.809	0.561	0.611	
Median	0.883	0.915	0.576	0.661	
#<1; #>0.5	12	12	9	10	
#pv<.1	6	7	9	9	
Averages (all horizons)					
Mean	0.828	0.832	0.570	0.593	
Median	0.909	0.927	0.577	0.615	
#<1; #>0.5	10	10	10	11	
#pv<.1	6	6	8	8	

(日) (個) (目) (目) (日) (の)

└ 5. Discussion

Can we reconcile our findings with the open-economy NK model?

Consider an open-economy Phillips curve:

$$\widehat{\pi}_t = \beta \mathbb{E}_t \left(\widehat{\pi}_{t+1} \right) + \kappa \widehat{x}_t^W + \varepsilon_t, \tag{1}$$

$$\widehat{x}_t^W \equiv (1-\xi)\,\widehat{x}_t + \xi\widehat{x}_t^* \tag{2}$$

Assume that inflationary expectations are based on a weighted average of past inflation and on the central bank's inflation target

$$\widehat{\pi}_t = \beta \left((1 - \theta) \,\widehat{\pi}_{t-1}^q + \theta \widehat{\pi}^T \right) + \kappa \widehat{x}_t^W + \varepsilon_t \tag{3}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

where $\hat{\pi}_t^q = \frac{1}{q} \sum_{j=1}^q \hat{\pi}_{t+1-j}$, and $0 \le \theta \le 1$ can be interpreted as a measure of credibility in the inflation target, $\hat{\pi}^T$.

5. Discussion

Can we reconcile our findings with the open-economy NK model?

Lack of credibility $(\theta = 0)$

Assume now that inflationary expectations are purely backward-looking (adaptive). Hence,

$$\widehat{\pi}_t = \beta \widehat{\pi}_{t-1}^q + \kappa \widehat{x}_t^W + \varepsilon_t, \tag{4}$$

ション ふゆ くち くち しょう くうく

If $\beta \to 1$, a positive global output gap shock will not simply lead to higher inflation, it will lead to steadily increasing inflation.

5. Discussion

Can we reconcile our findings with the open-economy NK model?

Full credibility $(\theta = 1)$

Suppose instead that inflationary expectations are firmly anchored (e.g., an advanced economy). Then,

$$\widehat{\pi}_t = \beta \widehat{\pi}^T + \kappa \widehat{x}_t^W + \varepsilon_t.$$
(5)

ション ふゆ くち くち しょう くうく

A shock that produces a positive global output gap will increase inflation above the central bank's target, but will not unleash an inflationary spiral as before.

- 6. Final remarks
 - Summary and final thoughts
 - The RW-AO mostly produces lower RMSPEs than its competitors
 - In a number of cases, these gains are statistically significant
 - The RW-AO produces success ratios > 0.5, and very often, statistically signicant
 - The RW-AO should be a new benchmark for inflation forecasting in EMEs

ション ふゆ くち くち しょう くうく

• Specifications with macroeconomic variables cannot beat it!