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Why Accurate Forecasting of Electricity 
Production is Important? 

• Strong correlate of electricity demand 
– The only reliable information in many developing countries 

– Almost perfect correlate in the absence of suppressed demand / trade

• Reliable forecasts are essential for
– short-term load allocation and 

– long-term planning for future generation and transmission

• Poor quality forecasts result in 
– supply shortages and forced power outages (downward-biased 

forecasts)

– over investment in generation and stranded assets (upward-biased 
forecasts)

– higher electricity prices 

– slower economic growth  

• This study focuses on Long-Term Demand Projections



Recent Examples from Developing Countries 
Illustrate the Scope of the Problem  

• Sri Lanka:  downward-biased forecast; underinvestment in 
generation capacity; decades of endemic power shortages in 
the years 1990-2007; 

• Indonesia: 2014-2015, power tariffs doubled; demand growth 
in 2015 was 30% less than expected;

• Malaysia: Incorrect anticipation of high electricity demand led 
to overinvestment in coal production capacity, with resulting 
production reserve margin of 60%. 

• India: ambitious investment of 100GW solar capacity; some 
concerns of overly optimistic electricity demand projections

• Brazil and Nepal: massive investments in (costly) hydropower; 
demand forecasts are not very reliable  



Thailand: A Lower Envelope of Demand Forecasts

Source: Chuenchom Sangarasri Greacen and Chris Greacen (2012), “Proposed Power Development
Plan (PDP) 2012 and a Framework for Improving Accountability and Performance of Power Sector Planning”



Vietnam: Forecasts Errors are Growing  

Source: Intelligent Energy Systems (2015)



Why Electricity Production/Demand is So 
Difficult to Forecast?

• Methodological and Data Issues
– Variety of forecasting methods / models

• Econometric Time-Series Models 

• Computational Economic Models (CGEs / DSGEs / DCGEs)  

• Bottom Up PE End Use Models (e.g., TIMES/MARKAL, LEAP)

• Algorithmic / Generic models (ANNs)

– Difficult to sort out between appropriateness of each approach; 
no clear benchmarking was ever done!

– Computational models take time and are costly to develop and 
maintain

– Econometric models are highly sensitive to data availability

• Political pressures to generate overly optimistic forecasts



Practitioners frequently reply on 
simple heuristics not models

• An example of ‘typical’ forecasting approach:
𝑑 = 𝑔 ∗ 𝑎 − 𝑝 ∗ 𝑏, 

where 
d = forecast of annual rate of demand growth

g = forecast of real income or GDP growth
a = income elasticity of electricity demand 

b = price elasticity of electricity demand
p = forecast of real power prices (tariffs)

• Some rules are even more simple:
– Electricity demand grows at predetermined (historical) rate
– Electricity demand is proportional to GDP as 1:1. 



What is wrong with relying on simple 
rules?

• Require estimates of electricity tariffs and GDP growth 
rates
– In many developing countries regulators don’t have clear 

methodologies for setting tariffs, those are set up on 
completely ad hoc basis

– GDP forecasts themselves are noisy

• Require estimates of electricity demand price and 
income elasticities 
– These estimates are typically pure guess 

– Income elasticity of electricity demand varies with income 
levels (non-homotheticity of electricity demand)

• Miss other important drivers of electricity demand



Objectives of this Study

• Develop a econometric framework for 
forecasting electricity production; 

• Evaluate accuracy of the electricity production 
forecasts resulting from different econometric 
methods and model specifications

• Provide off-the-shelf forward-looking 10 year 
production forecasts for 106 developing 
countries



Methodology

• Step 1: Test for Data Stationarity 
– Forecast variance increases linearly with forecast 

horizon; approaches infinity for non-stationary time 
series (Hendry and Clements 2001)

– Modified Dickey-Fuller t test (Elliott et al 1996)

• Step 2: Employ a portfolio of forecasting methods 
to obtain a number of competing forecasts
– within sample forecasts over 5 and 10 year horizon
– see next slide for method descriptions

• Step 3: Calculate Forecast Accuracy Measures
– Absolute accuracy methods (is method accurate?) 
– Relative accuracy methods (how does method fare 

against other methods?)



Time-Series Models
• VAR / VEC– multivariate autoregression / error-

correction models 
– employs multiple determinants of electricity production, 

which are co-determined

• ARIMA / GARCH – univariate time-series models
– Electricity production mean and variance is decomposed 

into  autoregressive and moving average components
– Non-stationary data are differenced until unit roots are 

eliminated 

• Holt-Winters / UCM – estimate electricity production 
trend
– can be deterministic or stochastic (random walk, RW).  
– UCM-RWSC also includes a stochastic cycle component    

• Average of the forecasting models above



Accuracy Measures
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– evaluates model performance relative to three benchmarks:
• pure random walk 
• electricity production proportional to GDP growth   
• AR(1) model 

– Diebold and Mariano (1995) test assesses whether differences 
between competing forecasts are statistically significant



Data

• The electricity production (net generation) 
– OECD/IEA Extended World Energy Balances

• Real GDP and Population 
– Penn World Tables (version 9) 

• Exogenous shocks affecting production 
– Wars / Insurgencies (Uppsala U database)
– Major natural disasters (Munich RE database)

• 106 developing countries 
– Include very recent OECD members and Turkey

• 52 years time series from 1960 to 2012
• Sorting by region, income category, system capacity, 

energy intensity, electrification rates, oil exports



More complex autoregressive models 
tend to perform better … 

Model 5 year forecast horizon 10 year forecast horizon 

Count Frequency Count Frequency 

VAR3 / VEC3 13 12.26% 21 20.00%

VAR2 / VEC2 20 18.87% 18 17.14%

GARCH 43 40.57% 44 41.90%

ARIMA 14 13.21% 11 10.48%

HOLT-WINTERS 
5 4.72% 7 6.67%

UCM
10 9.43% 2 1.90%

AVERAGE
1 0.94% 2 1.90%

Total 
106 100% 105 100%

Frequency Tabulation of Best Performing Methods: sMAPE criterion 



… outperforming random walk …

Model 5 year forecast horizon 10 year forecast horizon 

Median % significant Median % significant 

% Better (p = 0.05) % Better (p = 0.05) 

Lowest sMAPE 79% 79.57% 76% 66.67%

VAR3 / VEC3 10% 78.82% 5% 66.34%

VAR2 / VEC2 0.30% 77.88% 0.80% 57.69%

GARCH 36% 77.65% 23% 70.48%

ARIMA 15% 81.61% -7% 71.43%

HOLT-WINTERS 0.50% 85.87% -9% 80.95%

UCM-RWD -10% 87.50% -26% 85.42%

UCM-LLTM -11% 89.61% -27% 85.42%

UCM-RWC -48% 96.88% -58% 93.59%

Average -22% 89.87% -33% 69.52%



… being an order of magnitude more 
accurate than heuristic models…

Model 5 year forecast horizon 10 year forecast horizon 

Median % significant Median % significant 

% Better (p = 0.05) % Better (p = 0.05) 

Lowest sMAPE 202% 86.05% 101% 68.27%

VAR3 / VEC3 33% 90.28% 26% 68.32%

VAR2 / VEC2 20% 81.55% 16% 48.08%

GARCH 141% 88.10% 62% 70.19%

ARIMA 69% 84.62% 18% 75.00%

HOLT-WINTERS 43% 87.95% 12% 81.73%

UCM-RWD 31% 90.80% -13% 83.16%

UCM-LLTM 21% 94.44% -13% 81.05%

UCM-RWC -37% 93.15% -53% 90.91%

Average -17% 90.00% -31% 65.38%



… also selectively outperforming AR(1) …

Model 5 year forecast horizon 10 year forecast horizon 

Median % significant Median % significant 

% Better (p = 0.05) % Better (p = 0.05) 

Lowest sMAPE 87% 39.05% 117% 27.62%

VAR3 / VEC3 12% 82.35% 46% 68.32%

VAR2 / VEC2 1% 75.73% 17% 50.96%

GARCH 40% 13.21% 43% 6.67%

ARIMA 17% 6.80% 16% 1.92%

HOLT-WINTERS 5% 5.66% 12% 0.95%

UCM-RWD -1.50% 6.60% -0.70% 3.13%

UCM-LLTM -2% 7.37% -0.80% 1.04%

UCM-RWC -47% 6.32% -48% 0.00%

Average -26% 5.13% -15% 1.90%



… and having reasonable forecast errors
SMAPe by country categories

The quality of electricity demand forecasts diminishes for 
• the countries of Sub-Saharan Africa region
• the low-income countries
• the countries with small electricity generation systems / low access
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Key Takeaways

• Time-series econometric methods yield highly 
accurate forecast predictions

• These predictions are of an order of 
magnitude more accurate than those based 
on simple heuristics 

• Simple and parsimonious econometric models 
are advised for practitioners when alternatives 
do not exist or costly to develop.  



But Keep in Mind That

• Time-series econometric methods are not bullet 
proof:
– Backward looking, extrapolate existing trends
– Poorly applicable for cases when additions to / 

divestures of generation capacity are planned in the 
near future 

– Do not pick up well electricity trade (if significant)
– Sensitive to unexpected events (disasters, conflicts, 

etc.) 

• Alternative forecasting methods are strongly 
advised in these situations 



THANK YOU!

• The results of the study are disseminated as  

– J. Steinbuks. 2017. “Assessing the Accuracy of 
Electricity Demand Forecasts in Developing 
Countries”, World Bank Policy Research Paper 7974

– J. Steinbuks, J. de Wit, A. Kochnakyan, and V. 
Foster. 2017. “Forecasting Electricity Demand: An 
Aid for Practitioners”, Live Wire No. 2017/73. World 
Bank, Washington, DC 

– A blog post on GSG Energy Economics internal blog


